Основание пирамиды - ромб с большей диагональю d и острым углом альфа. все двугранные углы при основании пирамиды равны бета. найдите площадь боковой поверхности пирамиды.
Пусть AC - большая диагональ ромба; AC = d и острый угол . Диагонали ромба являются биссектрисами его углов, пересекаются под прямым углом и в точке пересечения делятся пополам.
Из прямоугольного треугольника AOD: отсюда выразим AD:
Площадь ромба равна S = a*h, с другой стороны: S = a²*sinα, приравнивая площади, получим h = a * sin α, где а - сторона ромба.
- высота ромба.
Высота ромба является диаметром вписанной окружности в ромб, тогда радиус вписанной окружности равен
Рассмотрим теперь прямоугольный треугольник SOK и найдем в нем SK - апофему пирамиды:
Найдем теперь площадь боковой поверхности пирамиды
Пусть AC - большая диагональ ромба; AC = d и острый угол . Диагонали ромба являются биссектрисами его углов, пересекаются под прямым углом и в точке пересечения делятся пополам.
Из прямоугольного треугольника AOD: отсюда выразим AD:
Площадь ромба равна S = a*h, с другой стороны: S = a²*sinα, приравнивая площади, получим h = a * sin α, где а - сторона ромба.
- высота ромба.
Высота ромба является диаметром вписанной окружности в ромб, тогда радиус вписанной окружности равен
Рассмотрим теперь прямоугольный треугольник SOK и найдем в нем SK - апофему пирамиды:
Найдем теперь площадь боковой поверхности пирамиды