Основанием пирамиды является прямоугольный треугольник с гипотенузой а и острым углом альфа . боковая грань, содержащая гипотенузу, перпендикулярна к основанию, а две другие боковые грани наклонены к нему под углом бета . найти объем пирамиды
Пусть Н-проекция высоты на основание, она лежит на гипотенузе , так как грань . проходящая через гипотенузу-по условию перпендикулярна основанию. Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2. С высотой пирамиды НS они образуют прямоугольные треугольники. В этих треугольниках SH-общая высота и одинаковый угол бетта по условию. Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует что НН1=НН2. Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα) Площадь основания S(осн)=a^2*sinα*cosα/2 Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))
Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2.
С высотой пирамиды НS они образуют прямоугольные треугольники.
В этих треугольниках SH-общая высота и одинаковый угол бетта по условию.
Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует
что НН1=НН2.
Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок
Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα)
Площадь основания S(осн)=a^2*sinα*cosα/2
Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))