Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
Как проверить существует ли треугольник с данными сторонами? Это легко, по теореме каждая сторона треугольника должна быть меньше суммы двух других сторон. И так, проверяем 52 должно быть меньше, чем 38+72 и это так, 38 должно быть меньше, чем 72+52 и это так, 72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует. 2) 10 должно быть меньше, чем 115+1203 и это так, 115 должно быть меньше, чем 1203+10 и это так, 1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует. 3) 1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).
52 должно быть меньше, чем 38+72 и это так,
38 должно быть меньше, чем 72+52 и это так,
72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует.
2)
10 должно быть меньше, чем 115+1203 и это так,
115 должно быть меньше, чем 1203+10 и это так,
1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует.
3)
1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.