ОТ ( ПОСТАВЛЮ ЛУЧШИЙ ОТВЕТ) Дан правильный многоугольник и длина радиуса окружности, описанной около многоугольника. Определи площадь многоугольника, если:
- у многоугольника 12 сторон и = 10 см
(если корня в ответе нет, под знаком корня пиши 1).
= ⋅‾‾‾‾‾√ см2;
- у многоугольника 9 сторон и = 10 см
(при использовании синусов, косинусов или тангенсов их значения округли до тысячных, ответ округли до целых).
= см2.
Проведем МТ⊥АВ, МК⊥ВС, МН⊥АС. Тогда МТ = МК = МН, так как точка М равноудалена от сторон треугольника (расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую).
Проведем МО⊥АВС, тогда МО = 3 см, расстояние от точки М до плоскости АВС.
Соединим точку О с точками Т, К и Н. ОТ, ОК и ОН - проекции соответствующих наклонных на плоскость АВС и так же перпендикулярны сторонам треугольника по теореме, обратной теореме о трех перпендикулярах.
Если наклонные, проведенные из одной точки, равны, то равны и их проекции. Значит точка О равноудалена от сторон треугольника, и значит О - центр окружности, вписанной в треугольник АВС, ОТ = ОК = ОН = r - радиус вписанной окружности.
Sabc = pr, где р - полупериметр.
p = (AB + BC + AC) / 2 = (13 + 15 + 14) / 2 = 42 / 2 = 21 см
Найдем площадь треугольника по формуле Герона:
Sabc = √(p(p - AB)(p - BC)(p - AC))
Sabc = √(21 · (21 - 13) · (21 - 15) · (21 - 14)) = √(21 · 8 · 6 · 7) = √(3 · 7 · 4 · 2 · 2 · 3 · 7) =
= 3 · 7 · 2 · 2 = 84 см²
r = S / p = 84 / 21 = 4 см
ΔMOK: ∠MOK = 90°, по теореме Пифагора:
МК = √(МО²+ ОК²) = √(3² + 4²) = √25 = 5 см