Параллельность плоскостей. Построение сечений. 1. Луч КМ пересекает параллельные плоскости а и б в точках М1 и М2, а луч КР - в точках Р1 и Р2 соответственно. Вычислите длину отрезка М1М2, если КМ1=8см, М1:М2Р2=4:9.
2. Дан тетраэдр АВСD, все грани - равносторонние треугольники со стороной 4см. Точка М - середина ребра DC, точка К - середина ребра AD. Постройте сечение тетраэдра плоскостью, содержащей точку К и параллельной плоскости AMB. Найти его периметр.
3. Постройте сечение, проходящее через указанные точки.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².
. Измерения равны a,a,2a, тогда , тогда измерения равны 2,2,4. Рассмотрим прямоугольный треугольник, в нем одна сторона - диагональ, другая - диагональ квадрата основания, третья - боковое ребро, тогда его стороны равны 2\sqrt{6}. Синус угла равен отношению бокового ребра к диагонали, то есть
Чтобы найти синус угла между диагональю параллелепипеда и плоскостью основания, нужно рассмотреть прямоугольный треугольник, в котором этот угол находится, чтобы потом его оттуда найти. В данном случае стоит рассмотреть прямоугольный треугольник, в котором одна сторона - диагональ основания, другая - диагональ параллелепипеда, а третья - боковое ребро. В нем как раз будет нужный нам угол.