Периметр паралелограма АВСД дорівнює 48см, АД=7см. Яку сторону паралелограма перетинає бісектриса кута В? Знайдіть відрізки, на які бісектриса ділить сторону паралелограма.
cosВ =3/5= CВ/АВ (косинус угла - отношение прилежащего катета к гипотенузе) Пусть СВ=3Х, АВ=5Х. По Пифагору (5Х)²-(3Х)² = АС². Отсюда Х=1. Высота, проведенная из вершины прямого угла на гипотенузу, делит данный тр-к на два подобных друг другу и исходному. Из подобия имеем соотношение: АВ/СВ=СВ\НВ. Откуда НВ= СВ²/АВ = 9/5 = 1,8. 2) Синус угла это отношение противолежащего катета к гипотенузе, то есть СВ/АВ=3/5. Их подобия тр-ков имеем: АВ/СВ=СВ/НВ или АВ= СВ²/НВ. СВ=3Х, АВ=5Х подставляем: 5Х=9Х²/1,8, откуда Х=1. Значит АВ = 5.
Сторона угла ВЕ равна стороне угла ВК и равна 2*Х. Сторона угла ВА равна стороне угла ВС и равна 5*Х. Угол В у треугольников АВС и ЕВК общий, значит мы имеем подобные треугольники. В подобных треугольниках соответствцющие углы равны. Значит <BEK=<BAC, а <BKE=BCA. эти углы - соответственные при прямых ЕК и АС и секущих ВА и ВС. Значит прямые ЕК и АС - параллельны. Прямая АС лежит в плоскости α, значит ЕК параллельна плоскости α. Итак, ЕК||АС.Имеем два подобных тр-ка: ЕВК и АВС с коэффициентом подобия 2/5. Тогда ЕК/АС = 2/5. ЕК=4, Значит АС=10см.
Пусть СВ=3Х, АВ=5Х. По Пифагору (5Х)²-(3Х)² = АС². Отсюда Х=1.
Высота, проведенная из вершины прямого угла на гипотенузу, делит данный тр-к на два подобных друг другу и исходному. Из подобия имеем соотношение:
АВ/СВ=СВ\НВ. Откуда НВ= СВ²/АВ = 9/5 = 1,8.
2) Синус угла это отношение противолежащего катета к гипотенузе, то есть СВ/АВ=3/5. Их подобия тр-ков имеем: АВ/СВ=СВ/НВ или АВ= СВ²/НВ.
СВ=3Х, АВ=5Х подставляем: 5Х=9Х²/1,8, откуда Х=1. Значит АВ = 5.
Итак, ЕК||АС.Имеем два подобных тр-ка: ЕВК и АВС с коэффициентом подобия 2/5. Тогда ЕК/АС = 2/5. ЕК=4, Значит АС=10см.