Пусть в параллелограмме ABCD (В - тупой угол) проведены высоты ВН и ВН1. Он нас хотят узнать величину угла НВН1. 1) Так как угол В=140, то и противолежащий угол D=140. Значит углы А и С равны по 180-140=40. 2) Так как образовавшийся треугольник АВН - прямоугольный, то сумма его острых углов А и АВН равна 90. Угол АВН равен 90-40=50. 3) Аналогично в треугольнике ВСН1 угол СВН1 равен 90-40=50. 4) Так как угол В - это сумма углов АВН+НВН1+СВН, из которорых один - искомый, а два других известны, то уголо НВН1 будет равен 140-50-50=40 ответ: 40 градусов.
Средняя линия трапеции - это отрезок, соединяющий середины боковых сторон трапеции и проходящий параллельно ее основаниям.
Пусть в трапеции АВСD средняя линия EF пересекает диагонали трапеции АС и ВD в точках М и N соответственно. Тогда в треугольнике АВС отрезок ЕМ является средней линией, поскольку ЕМ║ВС как часть средней линии трапеции и точка Е - середина стороны АВ.
Следовательно, Сторона АС треугольника точкой М делится пополам.
Аналогично в треугольнике ВCD отрезок NF - средняя линия и делит сторону BD пополам.
Таким образом, доказано, что средняя линия трапеции делит ее диагонали пополам, то есть проходит через их середины, что и требовалось доказать.
1) Так как угол В=140, то и противолежащий угол D=140. Значит углы А и С равны по 180-140=40.
2) Так как образовавшийся треугольник АВН - прямоугольный, то сумма его острых углов А и АВН равна 90. Угол АВН равен 90-40=50.
3) Аналогично в треугольнике ВСН1 угол СВН1 равен 90-40=50.
4) Так как угол В - это сумма углов АВН+НВН1+СВН, из которорых один - искомый, а два других известны, то уголо НВН1 будет равен 140-50-50=40
ответ: 40 градусов.
Средняя линия трапеции - это отрезок, соединяющий середины боковых сторон трапеции и проходящий параллельно ее основаниям.
Пусть в трапеции АВСD средняя линия EF пересекает диагонали трапеции АС и ВD в точках М и N соответственно. Тогда в треугольнике АВС отрезок ЕМ является средней линией, поскольку ЕМ║ВС как часть средней линии трапеции и точка Е - середина стороны АВ.
Следовательно, Сторона АС треугольника точкой М делится пополам.
Аналогично в треугольнике ВCD отрезок NF - средняя линия и делит сторону BD пополам.
Таким образом, доказано, что средняя линия трапеции делит ее диагонали пополам, то есть проходит через их середины, что и требовалось доказать.