Обозначим М - точку середины стороны АС. Согласно исходным данным (хА = 0; хС = 0;) точки А и С расположены на оси Оу, значит, сторона АС - вертикальна Найдём координаты точки М. хА = 0; хС = 0; хМ = (хС - хА)/2 = 0 уА = -1; уС = 3; уМ = (уС - уА)/2 = (3 + 1)/2 = 2 ВМ - является медианой и, одновременно, высотой. Следовательно ВМ ⊥ АС, то есть отрезок ВМ горизонтален. Тогда ордината точки В равна ординате точки М: уВ = 2. Длина стороны треугольника равна АС = уС - уА = 3 - (-1) = 4 Высота равностороннего треугольника ВМ = АС·sin 60° = 4· 0.5√3 = 2√3 Поскольку отрезок ВМ горизонтален, и точка М лежит на оси Оу, то расстояние вершины В от точки М равно высоте треугольника, и абсцисса вершины В равна хВ = 2√3, если вершина В находится справа от оси Оу. Если вершина В лежит слева от оси Оу, то её абсцисса равна хВ = -2√3 ответ: В(2√3; 2) или В(-2√3; 2)
Правильная треугольная призма вписана в шар. основания призмы вписаны в окружности - сечения шара плоскостями призмы. 1. найдем радиус сечения. правильный треугольник со стороной а=2 вписан в окружность радиуса r. радиус описанной около правильного треугольника окружности: r=a/√3 r=2/√3.
2. рассмотрим прямоугольный треугольник: катет - (1/2) высоты призмы - расстояние от центра шара до плоскости основания призмы, до центра правильного треугольника катет - радиус описанной около правильного треугольника окружности r=2/√3 гипотенуза - радиус шара R=7/√3 по теореме Пифагора: R²=r²+(H/2)² (7/√3)²=(2/√3)²+H²/4
Согласно исходным данным (хА = 0; хС = 0;) точки А и С расположены на оси Оу, значит, сторона АС - вертикальна
Найдём координаты точки М.
хА = 0; хС = 0; хМ = (хС - хА)/2 = 0
уА = -1; уС = 3; уМ = (уС - уА)/2 = (3 + 1)/2 = 2
ВМ - является медианой и, одновременно, высотой. Следовательно
ВМ ⊥ АС, то есть отрезок ВМ горизонтален.
Тогда ордината точки В равна ординате точки М: уВ = 2.
Длина стороны треугольника равна АС = уС - уА = 3 - (-1) = 4
Высота равностороннего треугольника ВМ = АС·sin 60° = 4· 0.5√3 = 2√3
Поскольку отрезок ВМ горизонтален, и точка М лежит на оси Оу, то расстояние вершины В от точки М равно высоте треугольника, и абсцисса вершины В равна хВ = 2√3, если вершина В находится справа от оси Оу. Если вершина В лежит слева от оси Оу, то её абсцисса равна хВ = -2√3
ответ: В(2√3; 2) или В(-2√3; 2)
основания призмы вписаны в окружности - сечения шара плоскостями призмы.
1. найдем радиус сечения. правильный треугольник со стороной а=2 вписан в окружность радиуса r. радиус описанной около правильного треугольника окружности: r=a/√3
r=2/√3.
2. рассмотрим прямоугольный треугольник:
катет - (1/2) высоты призмы - расстояние от центра шара до плоскости основания призмы, до центра правильного треугольника
катет - радиус описанной около правильного треугольника окружности r=2/√3
гипотенуза - радиус шара R=7/√3
по теореме Пифагора: R²=r²+(H/2)²
(7/√3)²=(2/√3)²+H²/4
H²=60
H=2√15