Плоскость γ пересекает стороны DE и DF треугольника DEF в точках В и С соответственно и параллельна стороне EF, CD : CF = 3:7, ВС = 9 см. Найдите сторону EF треугольника
Решение. 1. На прямой "а" откладываем последовательно данные нам отрезки АВ=2см и CD=3см (точки В и С совпадают). 2. При циркуля делим отрезок АD пополам, проведя окружности с центрами в точках А и D равными радиусами R=AD) и соединив точки пересечения окружностей. 3. Из полученной точки О радиусом ОА=ОD проводим полуокружность. 4. Из точки В (С) восстанавливаем перпендикуляр к прямой AD. 5. Точка пересечения полуокружности и этого перпендикуляра даст нам вершину Е прямого угла искомого прямоугольного треугольника. 6. Соединив точки А, Е и D получим искомый прямоугольный треугольник АЕD. Доказательство: <AED=90°, так как опирается на диаметр AD.
Для удобства чтения, запоминания и записи каждая цифра в числе имеет свое место. Цифры в числе разбивают на так называемые классы: справа отделяют три цифры (первый класс), затем еще три (второй класс) и т.д. Каждая из цифр класса называется его разрядом. Разряды считаются справа налево, начиная с первого разряда - единицы, второй разряд - десятки, третий разряд - сотни, четвертый разряд - единицы тысяч и т.д. Тогда, чтобы применялось равенство 9:3=3 при делении десятков и единиц числа на 3, число десятков и единиц должно быть равно 9. Тогда заданное трехзначное число можно записать в виде: 199; 299; 399; 499; 599; 699; 799; 899; 999
1. На прямой "а" откладываем последовательно данные нам отрезки АВ=2см и CD=3см (точки В и С совпадают).
2. При циркуля делим отрезок АD пополам, проведя окружности с центрами в точках А и D равными радиусами R=AD) и соединив точки пересечения окружностей.
3. Из полученной точки О радиусом ОА=ОD проводим полуокружность.
4. Из точки В (С) восстанавливаем перпендикуляр к прямой AD.
5. Точка пересечения полуокружности и этого перпендикуляра даст нам вершину Е прямого угла искомого прямоугольного треугольника.
6. Соединив точки А, Е и D получим искомый прямоугольный треугольник АЕD.
Доказательство: <AED=90°, так как опирается на диаметр AD.