По каким из перечисленных элементов можно построить циркулем и линейкой прямоугольный треугольник? по катетам по катету и гипотенузе по катету и прилежащему острому углу по двум острым углам по гипотенузе
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
Рассмотрим треугольники AKO и CMO. Они равны как прямоугольные треугольники по катету (KO=MO) и прилежащему острому углу (KOA=MAC как противоположные углы пересекающихся прямых). Следовательно высоты поделены точкой пересечения на равные отрезки, это свойство равнобедренного треугольника. Если этого мало, то треугольник AMC равен треугольнику CKA по двум катетам (MO=KO, MC=KA из предыдущего доказательства). Следовательно в них равны и углы КАС и МСА, которые являются углами при основании, а это значит что треугольник равнобедренный