Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Всего образовалось 8 углов, по 4 равных между собой.
∠1 и ∠2 не могут быть ни смежными, ни внутренними односторонними, так как их сумма не равна 180°. Значит, они или вертикальные, или внутренние разносторонние, или соответствующие и, следовательно, равны между собой. ∠1=∠2=102°:2=51° И еще два угла будут равны 51°.
Остальные четыре угла равны между собой. Они являются с уже известными углами или смежными, или внутренними односторонними, или соответствующими и равны 180°-51°=129°.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
∠1 и ∠2 не могут быть ни смежными, ни внутренними односторонними, так как их сумма не равна 180°. Значит, они или вертикальные, или внутренние разносторонние, или соответствующие и, следовательно, равны между собой.
∠1=∠2=102°:2=51°
И еще два угла будут равны 51°.
Остальные четыре угла равны между собой. Они являются с уже известными углами или смежными, или внутренними односторонними, или соответствующими и равны 180°-51°=129°.
ответ. 51° и 129°.