За точку обозначим А, перпендикуляр к плоскости- АВ, наклонная-АС. пусть АВ=х, тогда АС=2х найдем проекцию наклонной. проекция точки А является В, проекция точки С является С, тогда проекция наклонной АС является ВС. рассмотрим треугольник АВС-прямоугольный(В=90), АВ-катет, АС-гипотенуза, в два раза большая катета, следовательно по свойству - если в прямоугольном треугольнике катет вдвое меньше гипотенузы, то угол противолежащий угол равен 30 градусам. т.е. угол АСВ=30 градусов. а угол между накл и ее проекцией и есть угол АСВ
Пусть M - точка пересечения BE и AD. В треугольнике BAD биссектриса перпендикулярна стороне, то есть AB = BD; (и между прочим, AM = MD), поскольку D - середина BC, то BC = 2*AB; отсюда по свойству биссектрисы AE/EC = AB/BC = 1/2; то есть EC = 2*AE; Дальше можно действовать двумя Если известны теоремы Чевы и Ван-Обеля, то быстро находится BM/ME = 3; второй это показать - надо провести через точку E прямую II BC, до пересечения с AD в точке K; Ясно, что AK/KD = AE/EC = 1/2; откуда KM = AD/2 - AD/3 = AD/6, и KM/MD = 1/3; из подобия треугольников KME и BMD следует BM = 3*ME; Теперь есть все, чтобы найти стороны. AM = 84; BM = 126; ME = 42; из прямоугольного треугольника AMB легко находится AB = 42√13; из AME => AE = 42√5; BC = 2*AB = 84√13; AC = 3*AE = 126√5;
пусть АВ=х, тогда АС=2х
найдем проекцию наклонной. проекция точки А является В, проекция точки С является С, тогда проекция наклонной АС является ВС.
рассмотрим треугольник АВС-прямоугольный(В=90), АВ-катет, АС-гипотенуза, в два раза большая катета, следовательно по свойству - если в прямоугольном треугольнике катет вдвое меньше гипотенузы, то угол противолежащий угол равен 30 градусам. т.е. угол АСВ=30 градусов. а угол между накл и ее проекцией и есть угол АСВ
В треугольнике BAD биссектриса перпендикулярна стороне, то есть AB = BD; (и между прочим, AM = MD), поскольку D - середина BC, то BC = 2*AB; отсюда по свойству биссектрисы AE/EC = AB/BC = 1/2; то есть EC = 2*AE;
Дальше можно действовать двумя Если известны теоремы Чевы и Ван-Обеля, то быстро находится BM/ME = 3; второй это показать - надо провести через точку E прямую II BC, до пересечения с AD в точке K;
Ясно, что AK/KD = AE/EC = 1/2; откуда KM = AD/2 - AD/3 = AD/6, и KM/MD = 1/3; из подобия треугольников KME и BMD следует BM = 3*ME;
Теперь есть все, чтобы найти стороны. AM = 84; BM = 126; ME = 42;
из прямоугольного треугольника AMB легко находится AB = 42√13;
из AME => AE = 42√5;
BC = 2*AB = 84√13;
AC = 3*AE = 126√5;