1.Ромб — это параллелограмм, у которого все стороны равны. - Диагонали ромба взаимно перпендикулярны. - Диагонали ромба являются биссектрисами углов. - Диагонали пересекаются под прямым углом и делятся в точке пересечения пополам. 2.Прямоугольник — параллелограмм, у которого все углы прямые. Свойства: Противолежащие стороны параллельны и равны. Диагонали прямоугольника пересекаются и точкой пересечения делятся пополам. Все углы прямоугольника равны 90градусов. Диагонали прямоугольника равны. 3. Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине. 4. Средняя линия трапеции - отрезок, соединяющий середины боковых сторон этой трапеции. Свойство: средняя линия параллельна основаниям и равна половине суммы оснований.
Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
- Диагонали ромба взаимно перпендикулярны.
- Диагонали ромба являются биссектрисами углов.
- Диагонали пересекаются под прямым углом и делятся в точке пересечения пополам.
2.Прямоугольник — параллелограмм, у которого все углы прямые.
Свойства: Противолежащие стороны параллельны и равны. Диагонали прямоугольника пересекаются и точкой пересечения делятся пополам. Все углы прямоугольника равны 90градусов. Диагонали прямоугольника равны.
3. Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
4. Средняя линия трапеции - отрезок, соединяющий середины боковых сторон этой трапеции. Свойство: средняя линия параллельна основаниям и равна половине суммы оснований.
Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
S осн=3•16=48 Оснований у призмы 2.
S полн=126+2•48=222 (ед. площади)