Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Боковые стороны равны 10 см, основание равно 8 см.
Объяснение:
Дан равнобедренный треугольник АВС с основанием АС. По условию точка касания делит боковые сторону (они равны) на отрезки x и y, считая от вершины В.
Касательные к вписанной окружности , проведенные из одной вершины, равны. Следовательно, периметр треугольника равен:
Рabc = 2x +4y = 28 см. (1) (уравнение)
x - y =2 (дано) => y = x-2. Подставляем это значение в (1):
2x + 4x - 8 = 28 => x = 6 см. y = 4 см. =>
Боковые стороны равны x+y = 10 см, основание равно 2y = 8 см.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°Боковые стороны равны 10 см, основание равно 8 см.
Объяснение:
Дан равнобедренный треугольник АВС с основанием АС. По условию точка касания делит боковые сторону (они равны) на отрезки x и y, считая от вершины В.
Касательные к вписанной окружности , проведенные из одной вершины, равны. Следовательно, периметр треугольника равен:
Рabc = 2x +4y = 28 см. (1) (уравнение)
x - y =2 (дано) => y = x-2. Подставляем это значение в (1):
2x + 4x - 8 = 28 => x = 6 см. y = 4 см. =>
Боковые стороны равны x+y = 10 см, основание равно 2y = 8 см.