Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
Данный многоугольник состоит из равнобедренных треугольников с основанием 24.
Радиус вписанной окружности - высота этого треугольника и равен по условию задачи 4. Найдя боковую сторону такого треугольника, найдем и радиус описанной около этого многоугольника окружности,т.к эта сторона и есть радиус описанной окружности. Решение задачи сводится, в итоге, к нахождению стороны равнобедренного треугольника с основанием 24 и высотой 4. Высота, половина основания и боковая сторона образуют прямоугольный треугольник. Найдем боковую сторону по теореме Пифагора. R²=r²+12² R²=4²+12²=16+144=160 R=√160=4√10
(CD^AD) = 60°.
Объяснение:
Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
180° - 120° = 60°.
Данный многоугольник состоит из равнобедренных треугольников с основанием 24.
Радиус вписанной окружности - высота этого треугольника и равен по условию задачи 4.
Найдя боковую сторону такого треугольника, найдем и радиус описанной около этого многоугольника окружности,т.к эта сторона и есть радиус описанной окружности.
Решение задачи сводится, в итоге, к нахождению стороны равнобедренного треугольника с основанием 24 и высотой 4.
Высота, половина основания и боковая сторона образуют прямоугольный треугольник.
Найдем боковую сторону по теореме Пифагора.
R²=r²+12²
R²=4²+12²=16+144=160
R=√160=4√10