провидите анализ лексических выразительных средств используемый в тексте найдите и выпишите метафоры олицетворение эпитеты обьясните с какой целью они используются автором В уставшем от зимней тягости лесу, когда еще не распустились проснувшиеся почки, когда горестные пни зимней порубки еще не дали поросль, но уже плачут, когда мертвые бурые листья лежат пластом, когда голые ветви еще не шелестят, а лишь потихоньку трогают друг друга, – неожиданно донесся запах подснежника! Еле-еле заметный, но это запах пробуждающейся жизни, и потому он трепетно радостный, хотя почти и не ощутим. Смотрю вокруг – оказалось, он рядом. Стоит на земле цветок, крохотная капля голубого неба, такой простой и откровенный первовестник радости и счастья
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .
1. Если треугольники подобны, то отношения сторон у них равны.
Пусть х - коэффициент пропорциональности.
Тогда стороны треугольника 2x, 5x, 4x.
Меньшая сторона 2х = 22, тогда
х = 11 см
Большая сторона равна 5х:
11 · 5 = 55 см
2. Площади подобных треугольников относятся как квадрат коэффициента подобия.
Если сходственные стороны относятся как 3 : 5, то
Sabc : Smnp = 9 : 25
Учитывая, что Smnp = Sabc + 16, получаем уравнение:
Sabc : (Sabc + 16) = 9 : 25
25·Sabc = 9·Sabc + 144
16·Sabc = 144
Sabc = 9 см²
3. Пусть х - сторона квадрата.
Из треугольника, образованного двумя сторонами квадрата и диагональю по теореме Пифагора:
x² + x² = 16²
2x² = 256
x² = 128
x = 8√2 см
Р = 8√2 · 4 = 32√2 см
4. Из прямоугольного треугольника ACD по теореме Пифагора найдем АС:
АС = √(AD² - CD²) = √(225 - 64) = √161
Площадь параллелограмма равна произведению стороны на проведенную к ней высоту:
Sabcd = CD · AC = 8 · √161 = 8√161 см²
5. ΔАВН: ∠Н = 90°, ∠А = 60°, ⇒ ∠В = 30°. Напротив угла в 30° лежит катет, равный половине гипотенузы, АН = АВ/2 = 4 см.
По теореме Пифагора ВН = √(АВ² - АН²) = √(64 - 16) = √48 = 4√3 см
АН : HD = 2 : 3, ⇒ HD = 6 см.
HBCD - прямоугольник, ⇒ ВС = HD = 6 см.
Sabcd = (AD + BC)/2 · BH = (10 + 6)/2 · 4√3 = 32√3 см
6. ΔACD прямоугольный, DE его высота. По свойству пропорциональных отрезков в прямоугольном треугольнике:
DE² = AE · EC = 8 · 4 = 32
DE = √32 = 4√2 см
ΔAED: по теореме Пифагора
AD = √(AE² + ED²) = √(64 + 32) = √96 = 4√6 см
ВС = AD = 4√6 см
ΔCDE: по теореме Пифагора
CD = √(EC² + ED²) = √(16 + 32) = √48 = 4√3 см
АВ = CD = 4√3 см
а) АВ : ВС = 4√3 / (4√6) = 1/√2 = √2/2
б) Pabcd = (AB + BC)·2 = (4√3+ 4√6)·2 = 8·(√3 + √6) см
в) Sabcd = AB·BC = 4√3 · 4√6 = 16√18 = 48√2 см
7. Так как треугольники подобны,
BC : BD = BD : AD
BD² = BC · AD = 8 · 12,5 = 100
BD = 10 см
8. Треугольник АВС равнобедренный, медиана ВН является и высотой.
Из ΔАВН по теореме Пифагора:
ВН = √(АВ² - АН²) = √(625 - 49) = √576 = 24 см
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины:
ВО : ОН = 2 : 1, ⇒ ОН = ВН/3 = 8 см
Из треугольника АОН по теореме Пифагора:
АО = √(ОН² + АО²) = √(64 + 49) = √113 см
АО = 2/3 АМ
АМ = √113 · 3/2 = 3√113/2 см
В равнобедренном треугольнике медианы, проведенные к боковым сторонам равны, значит
СК = АМ = 3√113/2 см