Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник (свойство) => ВС=ВF=5.
AD=BC=5 (противоположные стороны параллелограмма). KD= КА+AD=4+5 = 9.
Треугольники KAF и KDC подобны (так как AF параллельна DC). Из подобия: KD/KA=CD/AF.
CD=AB, AF=x, CD=5+x. Тогда 9/4=(5+x)/x. =>
х = 4. АВ=CD=4+5=9.
Или так:
КА параллельна ВС => <CKA=<BCK как накрест лежащие. <KFA=<BFC (вертикальные)=<BCF =>
Треугольник KAF равнобедренный и AF=КА=4.
АВ=CD=5+4=9.
ответ: АВ=CD = 9. BC=AD=5.
О1-середина АВ, О-середина BD, значит ОО1-средняя линия ΔABD , AO1OD-трапеция и OO1=AD/2=R
Соединив О1 и О с О2-получим 3 равносторонних треугольника со стороной R, значит AO1OD-равнобедренная трапеция, <O1AD=<ADO=60; AO1=O1O=OD=R=AD/2
Тогда AB=2AO1=2R, значит AD=AB-и ABCD-ромб со стороной , равной P/4=32/4=8; R=AD/2=4
Осталось найти диагонали ромба. ОD=R; BD=2OD=2*4=8
Рассмотрю ΔAOD-прямоугольный т к диагонали ромба перпендикулярны
AO^2=AD^2-OD^2=8^2-4^2=64-16=48; AO=4 корня из 3
Тогда диагональ АС=2АО=8 корней из 3
ответ диагонали 8 и 8 корней из 3
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник (свойство) => ВС=ВF=5.
AD=BC=5 (противоположные стороны параллелограмма). KD= КА+AD=4+5 = 9.
Треугольники KAF и KDC подобны (так как AF параллельна DC). Из подобия: KD/KA=CD/AF.
CD=AB, AF=x, CD=5+x. Тогда 9/4=(5+x)/x. =>
х = 4. АВ=CD=4+5=9.
Или так:
КА параллельна ВС => <CKA=<BCK как накрест лежащие. <KFA=<BFC (вертикальные)=<BCF =>
Треугольник KAF равнобедренный и AF=КА=4.
АВ=CD=5+4=9.
ответ: АВ=CD = 9. BC=AD=5.
О1-середина АВ, О-середина BD, значит ОО1-средняя линия ΔABD , AO1OD-трапеция и OO1=AD/2=R
Соединив О1 и О с О2-получим 3 равносторонних треугольника со стороной R, значит AO1OD-равнобедренная трапеция, <O1AD=<ADO=60; AO1=O1O=OD=R=AD/2
Тогда AB=2AO1=2R, значит AD=AB-и ABCD-ромб со стороной , равной P/4=32/4=8; R=AD/2=4
Осталось найти диагонали ромба. ОD=R; BD=2OD=2*4=8
Рассмотрю ΔAOD-прямоугольный т к диагонали ромба перпендикулярны
AO^2=AD^2-OD^2=8^2-4^2=64-16=48; AO=4 корня из 3
Тогда диагональ АС=2АО=8 корней из 3
ответ диагонали 8 и 8 корней из 3