Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются - признак скрещивающихся прямых.
Рассмотрим куб ABCDA1B1C1D1. Обозначим за a прямую, содержащую ребро AB, за b прямую, содержащую ребро BC, за c прямую, содержащую ребро A1B1.
Прямая b лежит в плоскости BB1C, а прямая c пересекает плоскость BB1C в точке B1, которая не принадлежит прямой B. Тогда по признаку выше прямые b и с являются скрещивающимися, что и требовалось доказать.
Рассмотрим куб ABCDA1B1C1D1. Обозначим за a прямую, содержащую ребро AB, за b прямую, содержащую ребро BC, за c прямую, содержащую ребро A1B1.
Прямая b лежит в плоскости BB1C, а прямая c пересекает плоскость BB1C в точке B1, которая не принадлежит прямой B. Тогда по признаку выше прямые b и с являются скрещивающимися, что и требовалось доказать.
ответ: да, могут.