Р- b)(р – с), где р - 2
Задача 1. Докажите, что медиана
разбивает треугольник на два равнове.
ликих треугольника.
Решение. Пусть BD - медиана тре-
угольника ABC (рис. 9). Треугольники
ABD и CBD имеют равные стороны AD
и DC и общую высоту ВР, т.е. тре-
Угольники, на основании следствия 5,
равновелики: SABD = ScBD-
Задача 2. Дано 4 RCт пnlinicohn
Пусть в прямоугольном треугольникеАСВ угол В равен 30° Тогда другой его острый угол будет равен 60°.
Докажем, что катет АС равен половине гипотенузы АВ.
Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ .
Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний. Катет АС равен половине AM, а так как AM равняется АВ, то катет АС будет равен половине гипотенузы АВ.
Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =)
Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108.
Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б)
Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =)
Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2
S1 = п 6 (6 + 12) = 108 п
S2 = п 6^2 = п 36
S = 72 п