Рассмотрим треугольник, образованный катетом, диагональю грани, содержащей этот катет боковым ребром призмы. призма прямая, значит боковое ребро является высотой призмы по теореме Пифагора Н=√10²-5²=5*√3 V=1/3S*H - формула объема призмы, подставляем известные величины V , H Находим S = (3*125*√3)/(25*√3)=15 площадь прямоугольного треугольника равна половине произведения его катетов, находим второй катет b=30/5=6 по теор Пифагора находим гипотенузу основания с=√5²+6²=√61 радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. R=1/2√61
призма прямая, значит боковое ребро является высотой призмы
по теореме Пифагора Н=√10²-5²=5*√3
V=1/3S*H - формула объема призмы, подставляем известные величины V , H Находим S = (3*125*√3)/(25*√3)=15
площадь прямоугольного треугольника равна половине произведения его катетов, находим второй катет b=30/5=6
по теор Пифагора находим гипотенузу основания с=√5²+6²=√61
радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. R=1/2√61
Обозначим катеты треугольника АС = СВ = х.
По теореме Пифагора составим уравнение:
АС² + ВС² = АВ²
x² + x² = (5√2)²
2x² = 50
x² = 25
x = 5 см
ВС = 5 см
2. Так же, как и в первой задаче, треугольник равнобедренный.
Тогда ВС = АС = 10 см.
3. В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы.
Пусть ВС = х, тогда АВ = 2х.
По теореме Пифагора составим уравнение:
АС² + ВС² = АВ²
12² + x² = (2x)²
144 + x² = 4x²
3x² = 144
x² = 48
x = √48 = 4√3 см
АВ = 2х = 8√3 см