Расстояние между центрами двух шаров равна 4 см, радиусы этих шаров равны 2√3см и 2см соответственно. Найдите под каким углом пересекаются поверхности этих шаров. (В ответ введите только число градусов)
1) Прямоугольный параллелепипед описан около цилиндра. радиус основания которого равен 4. а высота 5. Найти объем параллелепипеда
Все грани прямоугольного параллелепипеда -прямоугольники. Основания вписанного цилиндра - окружности, вписанные в основания параллелепипеда, а его высота является и высотой параллелепипеда.
Если в прямоугольник вписана окружность - этот прямоугольник - квадрат.
Стороны основания параллелепипеда равны диаметру оснований цилиндра.
а=2r=8
Объем прямоугольного параллелепипеда равен произведению его трех измерений.
V=S*H=8*8*5=320 (единиц объема)
----------------------
2) Радиус основания конуса равен 15, расстояние от центра до образующей равно 12. Найти площадь боковой поверхности конуса.
формула площади боковой поверхности конуса
S=πRL
Расстояние от центра основания до образующей - в данном случае высота прямоугольного треугольника ВОС, образованного высотой ВО конуса, радиусом ОС и образующей ВС (она же гипотенуза треугольника ОВС)
∆ ОНС - египетский ( отношение катета и гипотенузц 3:5). Значит, НС=9 ( можно найти по т.Пифагора)
ОС - катет ∆ ОВС.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.
1) a+b = 180 градусов, b = a-40 градусов, a+(a-40) = 180, 2a = 180+40 = 220, a = 220/2 = 110, b=110 - 40 = 70. ответ. 110 градусов. 2) Если хорда перпендикулярна диаметру, то она сама делится пополам этим диаметром (докажи!). Таким образом отрезки, на которые делится хорда диаметром это 15 см и 15 см. А отрезки, на которые делится диаметр хордой будут, t и (9t). По известной теореме для пересекающихся хорд имеем. 15*15 = t*9t, 15^2 = 9(t^2) = (3t)^2, 3t = 15; t = 15/3 = 5 см. D = t + 9t = 10t = 10*5 = 50 см. ответ. 50 см.
1) Прямоугольный параллелепипед описан около цилиндра. радиус основания которого равен 4. а высота 5. Найти объем параллелепипеда
Все грани прямоугольного параллелепипеда -прямоугольники. Основания вписанного цилиндра - окружности, вписанные в основания параллелепипеда, а его высота является и высотой параллелепипеда.
Если в прямоугольник вписана окружность - этот прямоугольник - квадрат.
Стороны основания параллелепипеда равны диаметру оснований цилиндра.
а=2r=8
Объем прямоугольного параллелепипеда равен произведению его трех измерений.
V=S*H=8*8*5=320 (единиц объема)
----------------------
2) Радиус основания конуса равен 15, расстояние от центра до образующей равно 12. Найти площадь боковой поверхности конуса.
формула площади боковой поверхности конуса
S=πRL
Расстояние от центра основания до образующей - в данном случае высота прямоугольного треугольника ВОС, образованного высотой ВО конуса, радиусом ОС и образующей ВС (она же гипотенуза треугольника ОВС)
∆ ОНС - египетский ( отношение катета и гипотенузц 3:5). Значит, НС=9 ( можно найти по т.Пифагора)
ОС - катет ∆ ОВС.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.
. ОС²=ВС*НС
225=ВС*9
ВС=225:9=25
S=π*15*25=375 (ед. площади)
-----------------------------
В ΔABC: AC=BC=13, sin ∠A=12/13. Hайти АВ
СН- высота ∆ АВС
АВ=2 АН
АН=АС*cos A
cos A=√(1-(12/13)² )=5/13
AH=5
АВ=5*2=10
b = a-40 градусов,
a+(a-40) = 180,
2a = 180+40 = 220,
a = 220/2 = 110,
b=110 - 40 = 70.
ответ. 110 градусов.
2) Если хорда перпендикулярна диаметру, то она сама делится пополам этим диаметром (докажи!).
Таким образом отрезки, на которые делится хорда диаметром это 15 см и 15 см. А отрезки, на которые делится диаметр хордой будут, t и (9t). По известной теореме для пересекающихся хорд имеем.
15*15 = t*9t,
15^2 = 9(t^2) = (3t)^2,
3t = 15;
t = 15/3 = 5 см.
D = t + 9t = 10t = 10*5 = 50 см.
ответ. 50 см.