Угол С - прямой, угол А=30 град, АВ - гипотенуза, ВС - катет, лежащий напротив угла А=30 град. Найти ВС. Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2. S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.
Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота. Сторона параллелограмма дана ВС=19. Необходимо найти высоту h. Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ. Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ. Соединим концы биссектрис углов А и В и обозначим буквами M и N. Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов. Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14. Площадь равна 14*19
Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2.
S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.
Сторона параллелограмма дана ВС=19.
Необходимо найти высоту h.
Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ.
Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ.
Соединим концы биссектрис углов А и В и обозначим буквами M и N.
Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов.
Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14.
Площадь равна 14*19