решить 8 класс: биссектрисы углов а и д параллелограмма авсд пересекаются в точке м, лежащей на стороне вс. периметр параллелограмма авсд равен 60 см. мд = 1 дм. найти: а) длины сторон авсд; б) углы авсд.
когда мы провели биссектрису MD у нас получился равносторонний треугольник у которого все стороны одинаковые: CD=DM=MC=10см и углы равняются 60 градусам: DMC=MCD=CDM=60 градусам. теперь нам известно, что стороны CD=BA=10см по скольку эти стороны параллельные. в суме эти два угла дают 20 см. чтобы найт другую сторону параллелограмма нам надо от периметра отнять 20 см и поделить на 2: (60-20):2=20 - сторона BC (AD) .углы MCD=BAD=60 градусам. чтобы найти углы ABC и BCD мы от 180 градусов отнимаем угол ABC (BCD) (потому что углы на одной стороне параллелограмма равны 180 градусам): ABC (BCD)= 180-60=120 градусов
а) AB=CD=10см
BC=AD=20см
б) ABC=CDA=120 градусов
BAD=BCD=60 градусов
Объяснение:
когда мы провели биссектрису MD у нас получился равносторонний треугольник у которого все стороны одинаковые: CD=DM=MC=10см и углы равняются 60 градусам: DMC=MCD=CDM=60 градусам. теперь нам известно, что стороны CD=BA=10см по скольку эти стороны параллельные. в суме эти два угла дают 20 см. чтобы найт другую сторону параллелограмма нам надо от периметра отнять 20 см и поделить на 2: (60-20):2=20 - сторона BC (AD) .углы MCD=BAD=60 градусам. чтобы найти углы ABC и BCD мы от 180 градусов отнимаем угол ABC (BCD) (потому что углы на одной стороне параллелограмма равны 180 градусам): ABC (BCD)= 180-60=120 градусов