В 1-м прямая не может пересекать под углом 370°, потому что 360° - это круг
Во 2-м может быть определить углы не по углам, а по сторонам?
Задание 4 вам нужно сделать самостоятельно, просто начертить отрезки данной длины и сформировать треугольник
Объяснение: задание 3
Периметр треугольника- это сумма всех сторон. Поскольку нам не известна длина боковой стороны, тогда мы обозначим её "х". Так как в ∆АВС равнобедренный, то его боковые стороны равны. Составляем уравнение:
х+х+12=30
2х+12=30
2х=30-12
2х=18
х=18÷2
х=9; боковая сторона треугольника АВС=9
ЗАДАНИЕ 5
Рассмотрим ∆АОВ и ∆ВОС. У них:
АВ=ВС, по условиям так как ∆АВС равнобедренный
Сторона ВО - общая
АО= ОС, так как они равноудалены друг от друга и соединяются в одной точке
Угол АВО= углу СВО, так как по условиям из вершины В проведена медиана, которая в равнобедренном треугольнике является биссектрисой и делит угол В пополам.
Треугольники равны по 3- м сторонам и углу.
Задание 6
По свойствам угла 30°, если катет лежит против этого угла, то катет равен половине гипотенузы. Катет АС = половине гипотенузы АВ, из чего делаю заключение, что напротив этого катета расположен угол 30°; угол В =30°. Теперь найдём угол А:
180-90-30=60°. Итак: угол В=30°; угол А=60°
Задание 7
В равнобедренном треугольнике боковые стороны и углы равны - угол А= углуВ, АВ =ВС, также медиана в равнобедренном треугольнике является ещё и биссектрисой, поэтому она разделяет сторону треугольника и угол из которого проведена - пополам АМ=МС, угол АБМ= углуСВМ, и является ещё и высотой, поэтому, разделяя сторону треугольника пополам, она ещё образует в каждом треугольнике прямой угол - угол АМВ= углу СМВ, также сама медиана является общей стороной этих треугольников.
∆АВМ=∆СВМ по трём углам и трём сторонам.
Задание 8
Площадь круга вычисляется по формуле S= πr^; π×4^=3,14×16 =50,24- это площадь круга с радиусом 4 см
S=π× 8^=3,14×64=200,96; это площадь круга с радиусом 8.
Теперь узнаем во сколько раз площадь одного круга больше другого: 200,96÷50,24= 4
ответ: площадь одного круга больше другого в 4 раза
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.
В 1-м прямая не может пересекать под углом 370°, потому что 360° - это круг
Во 2-м может быть определить углы не по углам, а по сторонам?
Задание 4 вам нужно сделать самостоятельно, просто начертить отрезки данной длины и сформировать треугольник
Объяснение: задание 3
Периметр треугольника- это сумма всех сторон. Поскольку нам не известна длина боковой стороны, тогда мы обозначим её "х". Так как в ∆АВС равнобедренный, то его боковые стороны равны. Составляем уравнение:
х+х+12=30
2х+12=30
2х=30-12
2х=18
х=18÷2
х=9; боковая сторона треугольника АВС=9
ЗАДАНИЕ 5
Рассмотрим ∆АОВ и ∆ВОС. У них:
АВ=ВС, по условиям так как ∆АВС равнобедренный
Сторона ВО - общая
АО= ОС, так как они равноудалены друг от друга и соединяются в одной точке
Угол АВО= углу СВО, так как по условиям из вершины В проведена медиана, которая в равнобедренном треугольнике является биссектрисой и делит угол В пополам.
Треугольники равны по 3- м сторонам и углу.
Задание 6
По свойствам угла 30°, если катет лежит против этого угла, то катет равен половине гипотенузы. Катет АС = половине гипотенузы АВ, из чего делаю заключение, что напротив этого катета расположен угол 30°; угол В =30°. Теперь найдём угол А:
180-90-30=60°. Итак: угол В=30°; угол А=60°
Задание 7
В равнобедренном треугольнике боковые стороны и углы равны - угол А= углуВ, АВ =ВС, также медиана в равнобедренном треугольнике является ещё и биссектрисой, поэтому она разделяет сторону треугольника и угол из которого проведена - пополам АМ=МС, угол АБМ= углуСВМ, и является ещё и высотой, поэтому, разделяя сторону треугольника пополам, она ещё образует в каждом треугольнике прямой угол - угол АМВ= углу СМВ, также сама медиана является общей стороной этих треугольников.
∆АВМ=∆СВМ по трём углам и трём сторонам.
Задание 8
Площадь круга вычисляется по формуле S= πr^; π×4^=3,14×16 =50,24- это площадь круга с радиусом 4 см
S=π× 8^=3,14×64=200,96; это площадь круга с радиусом 8.
Теперь узнаем во сколько раз площадь одного круга больше другого: 200,96÷50,24= 4
ответ: площадь одного круга больше другого в 4 раза
Фото с рисунком ниже
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.