Решить задачи :
1) В основании четырехугольной пирамиды лежит ромб, диагонали которого 24 см и 10 см. Высота пирамиды меньше периметра основания на 20 см Найти объем пирамиды
2) Объём треугольной пирамиды 2√3 см³ . Сторона основания 2 см, а основанием является правильный треугольник. Найдите длины всех боковых рёбер, если известно, что одно из них перпендикулярно основанию
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.
<MCL=90°, как угол между биссектрисами двух смежных углов (свойство).
Значит <CLM=45° (так как CL=CM - дано).
Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения:
2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°.
Проведем через точку А диаметр АК описанной окружности.
Тогда <АСК=90°, как угол, опирающийся на диаметр.
<AКC=180°-<AВC, так как опираются на одну хорду.
<KAC=180°-<ACK-<AKC или
<KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°.
То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны.
Отсюда КС=ВС=5, как хорды, стягивающие равные дуги.
Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13.
Это диаметр. Значит радиус описанной окружности равен 6,5.
ответ: R=6,5.