3 ед. и 7 ед.
Объяснение:
1. Чтобы определить проекции отрезков AC и BD, из точек A и B надо провести перпендикуляры AE и BF к плоскости α.
2. AE и BF - катеты прямоугольных треугольников АЕС и BFD.
3. AE и BF равны, как отрезки параллельных прямых между параллельными плоскостями.
4. Длины проекций CE и FD высчитаем из треугольников ACE и BDF.
CE+FD =10 по условию. => FD = 10 - CЕ.
По Пифагору АЕ² = АС² - СЕ² и BF² = BD² - FD² =>
81 - СЕ² = 121 - FD².
(10 - CE)² - CE² = 40 ед. =>
Длина CE = 3 ед.
5. Длина FD = 10-3 = 7 ед.
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
3 ед. и 7 ед.
Объяснение:
1. Чтобы определить проекции отрезков AC и BD, из точек A и B надо провести перпендикуляры AE и BF к плоскости α.
2. AE и BF - катеты прямоугольных треугольников АЕС и BFD.
3. AE и BF равны, как отрезки параллельных прямых между параллельными плоскостями.
4. Длины проекций CE и FD высчитаем из треугольников ACE и BDF.
CE+FD =10 по условию. => FD = 10 - CЕ.
По Пифагору АЕ² = АС² - СЕ² и BF² = BD² - FD² =>
81 - СЕ² = 121 - FD².
(10 - CE)² - CE² = 40 ед. =>
Длина CE = 3 ед.
5. Длина FD = 10-3 = 7 ед.
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .