Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
Объяснение:
Рисунок 380)
∆АВС- прямоугольный треугольник
АС- гипотенуза.
АВ и ВС- катеты.
По теореме Пифагора найдем катет ВС.
ВС²=АС²-АВ²=7²-5²=49-25=24
ВС=√24=2√6 см
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S=1/2*AB*BC=5*2√6/2=5√6 см².
ответ: площадь треугольника равна 5√6.
Рисунок 383)
Дано:
ABCD- прямоугольник.
АВ=9см.
BD=25см
S=?
Решение.
∆ABD- прямоугольный треугольник
BD- гипотенуза.
АВ и AD- катеты.
По теореме Пифагора найдем катет AD
AD²=BD²-AB²=25²-9²=625-81=544см
АD=√544=4√34см
S=AD*AB=9*4√34=36√34см²
ответ: площадь прямоугольника равна 36√34 см².
Рисунок 384)
При условии что внешние углы равны между собой и составляют градусную меру 135°.
Найдем угол <ВСА
<ВСА+<135=180°, смежные углы.
<ВСА=180°-135°=45°.
<ВСА=<САВ, так как внешние углы равны 135°.
В ∆ВСА, углы при СА равны 45° .
Отсюда следует что ∆ВСА- равнобедренный. ВА=ВС
Пусть сторона ВА будет х см. Тогда ВС тоже будет х см.
По теореме Пифагора составляем уравнение.
ВА²+ВС²=АС²
х²+х²=6²
2х²=36
х²=36/2
х²=18
х=√18
х=3√2 см сторона АВ и сторона ВС.
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S=1/2*AB*BC=1/2*3√2*3√2=9см².
ответ: площадь треугольника равна 9см²