С 1) Знайдіть площу рівнобедреного прямокутного трикутника з гіпотенузою с. Д 2) Площа ромба дорівнює 600 см 2 , а одна з діагоналей — 30 см. Знайдіть висоту ромба.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Диагональ делит трапецию на два треугольника со средними линиями. В треугольнике средняя линия равна половине параллельной стороны. Задача 10. Больший из отрезков - половина от 10, т.е. 5. Задача 11.Меньший из отрезков - половина от 12, т.е. 6. Задача 12. Средняя линия в трапеции - половина суммы параллельных сторон. Периметр 40, сумма боковых 20, значит сумма параллельных - тоже 20. Средняя линия 10. В 13. проведи высоту через точку пересечения диагоналей и рассмотри получившиеся 4 равнобедренных прямоугольных треугольника. Получится сумма оснований в 2 раза больше высоты, т.е. 20. А средняя линия 10. В 14 проведи две высоты рассмотри два треугольника и прямоугольник. Верхнее основание получится 7, а нижнее 37. Сумма 44, средняя линия 22. В 15 такое же рассуждение. Верхнее основание получается 111, нижнее 143. (111+143)/2 =127 - средняя линия. Вроде все должно быть верно. Самое главное - путь к ответу.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Задача 10. Больший из отрезков - половина от 10, т.е. 5.
Задача 11.Меньший из отрезков - половина от 12, т.е. 6.
Задача 12. Средняя линия в трапеции - половина суммы параллельных сторон. Периметр 40, сумма боковых 20, значит сумма параллельных - тоже 20. Средняя линия 10.
В 13. проведи высоту через точку пересечения диагоналей и рассмотри получившиеся 4 равнобедренных прямоугольных треугольника. Получится сумма оснований в 2 раза больше высоты, т.е. 20. А средняя линия 10.
В 14 проведи две высоты рассмотри два треугольника и прямоугольник. Верхнее основание получится 7, а нижнее 37. Сумма 44, средняя линия 22.
В 15 такое же рассуждение. Верхнее основание получается 111, нижнее 143. (111+143)/2 =127 - средняя линия.
Вроде все должно быть верно. Самое главное - путь к ответу.