Сторона правильного шестиугольника равна радиусу Описанной около него окружности. Соединим концы стороны шестиугольника с центром окружности. Получим правильный треугольник. Площадь правильного треугольника равна S=(√3/4)*R². Таких треугольников 6. В нашем случае S=6√3дм². Или: Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне. Высота правильного треугольника по Пифагору равна √(а²-а²/4)=а√3/2. Тогда его площадь равна S=(1/2)*a*a√3/2 или S=a²√3/4. Вот мы и вывели формулу. далее, как уже было сказано: площадь шести таких треугольников равна а²√3*3/2. а=2дм. S=6√3дм² ответ: S=6√3 дм²
ответ:Рисунок 1.47
Угол В вписанный,равен 90 градусов,опирается на дугу 180 градусов
Угол К вписанный,опирается на дугу
180+40=220 градусов и равен половине ее градусной меры
<В=110 градусов
Рисунок 1.48
Угол В вписанный,опирается на дугу
360-(120+80)=160 градусов
<АВD опирается на дугу
160:2=80 градусов
На эту же дугу опирается центральный угол АОD и равен ее градусной мере
<АОD=80 градусов
Рисунок 1.49
Радиус и касательная образуют угол 90 градусов.
Дуга ВСА равна 180 градусов,т к диаметр делит окружность пополам
360:2=280 градусов
Угол АВС вписанный и опирается на дугу в два раза больше его градусной меры
59•2=118 градусов
Угол ВАС опирается на дугу
180-118=62 градуса
он вписанный и равен половине градусной меры дуги
62:2=31 градус
Рисунок 1.50
<Р вписанный и равен половине дуги,на которую он опирается
Дуга равна
АЕ=55•2=110 градусов
< К=(110-40):2=35 градусов
Рисунок 1.51
<D вписанный,равен половине дуги,на которую он опирается
Дуга равна
50•2=100 градусов
Дуга FDG=360-100=260
<TFG=260:2=130 градусов
Объяснение:
В нашем случае S=6√3дм².
Или:
Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне. Высота правильного треугольника по Пифагору равна √(а²-а²/4)=а√3/2.
Тогда его площадь равна S=(1/2)*a*a√3/2 или S=a²√3/4. Вот мы и вывели формулу. далее, как уже было сказано: площадь шести таких треугольников равна а²√3*3/2. а=2дм. S=6√3дм²
ответ: S=6√3 дм²