Трапеция равнобедренная, основания равны 10 и 20 боковая 13 опустим высоту из угла основания 10 к основанию 20 получим треугольник прямоугольный, повторим с двумя другими углами, получим прямоугольник у которого 2е стороны будут равны 10, большее основание равно 20 след, 20-10=10 т.к. боковые стороны = и высоты= след. треугольники равны поэтому 10/2=5 по теореме Пифагора катет=кор.квадратный из квадрата гипотенузы вычесть квадрат катета, т.е. высота=13в кв,-5в кв. высота равна 12 площадь трапеции находят по формуле полоаина суммы оснований на высоту получаем (10+20)/2*12=180 ответ:180см
Когда есть задача, в условии которой дана сумма двух величин и их разность (не обязательно геометрия), а иксов Вы еще не проходили или не хотите их использовать, существует три варианта решения без иксов. 1. Если бы углы были равны, то их значение было бы равно 78⁰:2=39°. Но они не равны и разница между ними 18°. То есть значения углов отличаются от половинного на +9° и -9°. Следовательно, меньший из них (АОВ) равен (78°:2)-9°=30°, а больший из них (искомый) равен <СОВ = (78:2) + 9 = 48 градусов. 2. Пусть оба угла равны и равны меньшему из данных. Тогда их сумма была бы равна 78°-18°=60°. Значит меньший угол равен <AOB=60°:2=30°. Тогда больший (искомый) угол <СОВ равен 30°+18°=48°. 3. Пусть оба угла равны и равны большему из данных. Тогда их сумма была бы равна 78°+18°=96°. Значит больший угол равен 96°:2=48°.
опустим высоту из угла основания 10 к основанию 20 получим треугольник прямоугольный, повторим с двумя другими углами, получим прямоугольник у которого 2е стороны будут равны 10, большее основание равно 20 след, 20-10=10
т.к. боковые стороны = и высоты= след. треугольники равны поэтому 10/2=5 по теореме Пифагора катет=кор.квадратный из квадрата гипотенузы вычесть квадрат катета, т.е. высота=13в кв,-5в кв. высота равна 12
площадь трапеции находят по формуле полоаина суммы оснований на высоту получаем (10+20)/2*12=180 ответ:180см
1. Если бы углы были равны, то их значение было бы равно 78⁰:2=39°.
Но они не равны и разница между ними 18°. То есть значения углов отличаются от половинного на +9° и -9°. Следовательно, меньший из них
(АОВ) равен (78°:2)-9°=30°, а больший из них (искомый) равен
<СОВ = (78:2) + 9 = 48 градусов.
2. Пусть оба угла равны и равны меньшему из данных. Тогда их сумма была бы равна 78°-18°=60°. Значит меньший угол равен <AOB=60°:2=30°.
Тогда больший (искомый) угол <СОВ равен 30°+18°=48°.
3. Пусть оба угла равны и равны большему из данных. Тогда их сумма была бы равна 78°+18°=96°. Значит больший угол равен 96°:2=48°.
ответ: <COB=48°.