Сила P приложена к началу координат и составляющие её пальцем соответственно равны 5 и - 2 Найти уравнение прямой по которой направлена сила . решение по подробнее
Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
Обозначим точки касания сторон АВ и ВС окружности – точки О и М соответственно.
Отрезки касательных, проведённых из одной точки к окружности, равны.
Следовательно: АО=АК=5 см, СМ=СК=3 см, ВО=ВМ.
Р(∆АВС)=АВ+ВС+АС= (АО+ОВ)+(ВМ+МС)+(АК+КС)= 5+ОВ+ВМ+3+5+3= 16+ОВ+ВМ
Р(∆АВС)=20 см по условию, тогда:
16+ОВ+ВМ=20
ОВ+ВМ=4
ОВ=2 см, ВМ=2 см.
Исходя из этого:
АВ=АО+ОВ=5+2=7 см
ВС=ВМ+МС=2+3=5 см
АС=АК+КС=5+3=8 см.
Проверим по следствиям теоремы Пифагора:
Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Если квадрат большей стороны больше суммы квадратов двух других сторон, то треугольник тупоугольный.
Если квадрат большей стороны меньше суммы квадратов двух других сторон, то треугольник остроугольный.
АВ²=7²=49, ВС²=5²=25, АС²=8²=64
64<49+25
64<74
Верно, следовательно ∆АВС – остроугольный.
ответ: остроугольный.
Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
с² < a²+b² треугольник остроугольный. "