1) равносторонние, разносторонние и равнобедренные 2) равнобедренным называют треугольник у которого две стороны равны, равносторонним называют треугольник у которого все стороны равны, разносторонним называют треугольник у которого все стороны разные 3) 4)боковыми называются две равные стороны, а третьея называется основанием 5) в равнобедренном треугольнике углы при основании равны 6) биссектриса равнобедренного треугольника проведенная к основанию является медианой и высотой 7) эти углы равны 8) в равностороннем треугольнике все углы равны (каждый из них равен 60 градусов) 9) медиана проведённая из вершины равностороннего треугольника является биссектриса и высотой
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
2) равнобедренным называют треугольник у которого две стороны равны, равносторонним называют треугольник у которого все стороны равны, разносторонним называют треугольник у которого все стороны разные
3) 4)боковыми называются две равные стороны, а третьея называется основанием
5) в равнобедренном треугольнике углы при основании равны
6) биссектриса равнобедренного треугольника проведенная к основанию является медианой и высотой
7) эти углы равны
8) в равностороннем треугольнике все углы равны (каждый из них равен 60 градусов)
9) медиана проведённая из вершины равностороннего треугольника является биссектриса и высотой
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.