1. Рассмотрим треугольники ABD и DCA (не забываем, что важно правильно назвать треугольники!).
1) AC=BD (по условию).
2) Сторона AD — общая.
3) AB=CD (как противолежащие стороны параллелограмма).
Следовательно, треугольники ABD и DCA равны (по трем сторонам).
2. Из равенства треугольников следует равенство соответствующих углов:
∠BAD=∠CDA.
3. ∠BAD+∠CDA=180º.(как внутренние накрест лежащие углы при AB ∥ CD и секущей AD).
Пусть ∠BAD=∠CDA=xº, тогда
x+x=180
2x=180
x=90
4. Значит, ∠BAD=∠CDA=90º. Следовательно, ABCD — параллелограмм, у которого есть прямой угол. Отсюда, ABCD — прямоугольник ( по второму признаку прямоугольника).
Дано:
ABCD — параллелограмм,
AC и BD -диагонали,
AC=BD.
Доказать: ABCD — прямоугольник.
Доказательство:
1. Рассмотрим треугольники ABD и DCA (не забываем, что важно правильно назвать треугольники!).
1) AC=BD (по условию).
2) Сторона AD — общая.
3) AB=CD (как противолежащие стороны параллелограмма).
Следовательно, треугольники ABD и DCA равны (по трем сторонам).
2. Из равенства треугольников следует равенство соответствующих углов:
∠BAD=∠CDA.
3. ∠BAD+∠CDA=180º.(как внутренние накрест лежащие углы при AB ∥ CD и секущей AD).
Пусть ∠BAD=∠CDA=xº, тогда
x+x=180
2x=180
x=90
4. Значит, ∠BAD=∠CDA=90º. Следовательно, ABCD — параллелограмм, у которого есть прямой угол. Отсюда, ABCD — прямоугольник ( по второму признаку прямоугольника).
Что и требовалось доказать.
1. (по горизонтали) Как называется чертёжный инструмент для построения прямых углов? - Треугольник.
1. (по вертикали) Какой инструмент применяют для измерения углов? - Транспортир
2. Как называется угол, который меньше 90°? - Острый.
3. Общая точка 2 лучей, образующих угол. - Вершина (угла).
4. Как называется угол, который равен 90°? - Прямой
5. Как называются лучи, образующие угол? - Стороны (угла)
6. 1/180 доля развёрнутого угла. - 1 градус.
7. Как называется фигура, образованная 2 лучами, выходящими из 1 точки ? - Угол.
8. Как называется угол, который больше 90°? - Тупой.
9. Угол, который образовывают 2 дополнительных друг другу луча? - Развернутый.