Диагонали прямоугольника равны и в точке пересечения делятся пополам ⇒АО=ОВ=ОС=OD. Эти половинки диагоналей - проекции ребер пирамиды. Следовательно, ребра пирамиды как наклонные с равными проекциями равны. SA=SD=SC=SB
Боковые грани – 2 пары равных равнобедренных треугольников с основаниями 12 см и 15 см.
Высота SМ в ∆ASB=√(SO*+OM*)=√(64+6,25)=0,5√281
Высота SН в ∆BSC=√(SO²+OH²)=√(64+36)=10 см
S ∆ASB=AM•SM=6•0,5√281=3√281 см²
S ∆ BSC=BH•SH=2,5•10=25 см²
S бок=2•3√281+2•25=(6√281+50) см² или ≈150,58 см²
S полн=60+60√281+50=(110+60√281) см² или ≈210,58 см²
Основание пирамиды прямоугольник.
Его площадь 12•5=60 см²
Диагонали прямоугольника равны и в точке пересечения делятся пополам ⇒АО=ОВ=ОС=OD. Эти половинки диагоналей - проекции ребер пирамиды. Следовательно, ребра пирамиды как наклонные с равными проекциями равны. SA=SD=SC=SB
Боковые грани – 2 пары равных равнобедренных треугольников с основаниями 12 см и 15 см.
Высота SМ в ∆ASB=√(SO*+OM*)=√(64+6,25)=0,5√281
Высота SН в ∆BSC=√(SO²+OH²)=√(64+36)=10 см
S ∆ASB=AM•SM=6•0,5√281=3√281 см²
S ∆ BSC=BH•SH=2,5•10=25 см²
S бок=2•3√281+2•25=(6√281+50) см² или ≈150,58 см²
S полн=60+60√281+50=(110+60√281) см² или ≈210,58 см²
Площадь полной поверхности призмы – сумма площади двух оснований и площади боковой поверхности.
Обозначим вершины призмы ABCDD1A1B1C1
S осн= половине произведения диагоналей.
АС=АА1:tg30°=6√3
BD=BB1:tg60°=6/√3
S ABCD=6√3•6/√3=36 см*
Площадь боковой поверхности - произведение высоты призмы на периметр основания, т.е. 6•4AB
Ромб - параллелограмм.
В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон. Для ромба, стороны которого равны,
D²+d²=4AB².
(6√3)²+(6/√3)²=4AB²
AB=√(27+3))=√30
Sбок=6•4√30=24√30см²
S полн=2•36+24√30=24(3+√3)см²