Диагонали трапеции ABCD перпендикулярны и не равны - но для решения задачи это не важно. А важно то, что точки K, L, M и N - середины сторон трапеции ABCD
Диагональ МК четырехугольника KLMN- средняя линия трапеции ABCD. Средняя линия трапеции равна полусумме оснований. МК=(15+7):2=11см ---------------------------------------- Возможно, нужно найти диагональ LN, а не КМ. Тогда перпендикулярность диагоналей важна для решения задачи ( для чего-то она ведь дана ).
Стороны четырехугольника параллельны диагоналям и потому углы его - прямые (диагонали пересекаются под прямым углом). Черырехугольник KLMN - прямоугольник, и диагонали в нем равны. Поэтому LN=МК=11 см
Прямая b лежит в плоскости α. Прямая a не лежит в плоскости α и параллельна прямой b. Через точку M, лежащую в плоскости α (M не принадлежит b), проведена прямая c, параллельная a. Докажите, что c лежит в плоскости α
Все прямые, параллельные одной прямой, параллельны между собой. Прямая b параллельна прямой а. Прямая с параллельна прямой а, следовательно, она параллельна прямой b. Через две параллельные прямые можно провести плоскость, и притом только одну. Следовательно, прямая с лежит в той же плоскости, что прямая b, т.е. в плоскости α, что и требовалось доказать.
А важно то, что точки K, L, M и N - середины сторон трапеции ABCD
Диагональ МК четырехугольника KLMN- средняя линия трапеции ABCD.
Средняя линия трапеции равна полусумме оснований.
МК=(15+7):2=11см
----------------------------------------
Возможно, нужно найти диагональ LN, а не КМ.
Тогда перпендикулярность диагоналей важна для решения задачи ( для чего-то она ведь дана ).
Стороны четырехугольника параллельны диагоналям и потому углы его - прямые (диагонали пересекаются под прямым углом).
Черырехугольник KLMN - прямоугольник, и диагонали в нем равны.
Поэтому LN=МК=11 см
Через точку M, лежащую в плоскости α (M не принадлежит b), проведена прямая c, параллельная a. Докажите, что c лежит в плоскости α
Все прямые, параллельные одной прямой, параллельны между собой.
Прямая b параллельна прямой а.
Прямая с параллельна прямой а, следовательно, она параллельна прямой b.
Через две параллельные прямые можно провести плоскость, и притом только одну.
Следовательно, прямая с лежит в той же плоскости, что прямая b, т.е. в плоскости α, что и требовалось доказать.