Сторона AB ромба ABCD лежить у площині А, відстань між прямою BC і цією площиною дорівнює 7√3 см. Знайдіть кут між площинами ABC i a, якщо сторона ромба дорівнює 28 см, а
Поскольку АВ = АС, то треуг. АВС равнобедренный с основанием ВС. Центр описанной окружности находится на пересечении посерединных перпендикуляров. Так как в равнобедренном тр-ке высота ВН, опущенная из вершины к основанию является биссектриссой, медианой и посерединным перпендикуляром, то центр окружности О принадлежит ВН. ОА = ОВ = ОС как радиусы описанной окружности. Угол ВАС = 180 - 50 * 2 = 80. Углы ВАО = САО = 80 : 2 = 40. Тр-ки ВОА, ВОС и АОС - равнобедренные с основаниями АВ, ВС и АС соответственно. Угол АВО = АСО = 40 как углы при основании соответствующих равнобедренных треугольников. Тогда углы ОВС = ОСВ = 50 - 40 = 10. Угол ВОС = 180 - 10 * 2 = 160. ответ: 160.
А) Рассмотрим треуг. АВЕ и СВД. АВ = ВС как боковые стороны равнобедренного треуг. АВС. ВЕ = ВД как половинки боковых сторон равнобедренного тр-ка АВС (т.к. АЕ и СД медианы). Угол В у этих тр-ков общий. Следовательно тр-ки АВЕ = СВД по первому признаку. б) Рассм. тр-ки ДОЕ и АОС. В равнобедренном тр-ке медианы, проведенные из вершин при основании к боковым сторонам равны и медианы пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 считая от вершины. Значит АЕ = СД, ОД = ОЕ = 1/3 АЕ, АО = ОС = 2/2 АЕ. Треугольник, у которого две стороны равны, называется равнобедренным. Следовательно тр-ки ДОЕ и АОС равнобедренные. в) Повторюсь, медианы треугольника пересекаются в одной точке (эта точка называется центроид). Значит точка О лежит на медиане, проведенной из вершины В к основанию. Но медиана, проведенная из вершины равнобедренного треугольника к основанию является также и бисектриссой. Значит точка О лежит на бисектриссе, а точки Д и Е принадлежат боковым сторонам равнобедренного тр-ка АВС, следовательно ВО бисектрисса угла ДОЕ.
2. У равных тр-ков равны соответствующие стороны и углы. Пусть DE = DF = 4 см - боковые стороны, FE = 5 см - основание, тогда периметр DEF = 4 + 4 + 5 = 13 см. И как было сказано вначале, что у равных тр-ков равны соответствующие стороны, то АС = АВ = 4 см, ВС = 5 см. Р = 13 см.
Но может быть и другой вариант решения, поскольку в задаче не указано какая из сторон является основанием, а какая боковая, поэтому. EF = DF = 5 см - боковые стороны, DE = 4 см - основание, Р = 5 + 5 + 4 = 14 см. Следовательно периметр тр-ка АВС = 14 см.
Центр описанной окружности находится на пересечении посерединных перпендикуляров. Так как в равнобедренном тр-ке высота ВН, опущенная из вершины к основанию является биссектриссой, медианой и посерединным перпендикуляром, то центр окружности О принадлежит ВН.
ОА = ОВ = ОС как радиусы описанной окружности.
Угол ВАС = 180 - 50 * 2 = 80.
Углы ВАО = САО = 80 : 2 = 40.
Тр-ки ВОА, ВОС и АОС - равнобедренные с основаниями АВ, ВС и АС соответственно.
Угол АВО = АСО = 40 как углы при основании соответствующих равнобедренных треугольников. Тогда углы ОВС = ОСВ = 50 - 40 = 10.
Угол ВОС = 180 - 10 * 2 = 160.
ответ: 160.
АВ = ВС как боковые стороны равнобедренного треуг. АВС. ВЕ = ВД как половинки боковых сторон равнобедренного тр-ка АВС (т.к. АЕ и СД медианы). Угол В у этих тр-ков общий. Следовательно тр-ки АВЕ = СВД по первому признаку.
б) Рассм. тр-ки ДОЕ и АОС.
В равнобедренном тр-ке медианы, проведенные из вершин при основании к боковым сторонам равны и медианы пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 считая от вершины. Значит АЕ = СД, ОД = ОЕ = 1/3 АЕ, АО = ОС = 2/2 АЕ. Треугольник, у которого две стороны равны, называется равнобедренным. Следовательно тр-ки ДОЕ и АОС равнобедренные.
в) Повторюсь, медианы треугольника пересекаются в одной точке (эта точка называется центроид). Значит точка О лежит на медиане, проведенной из вершины В к основанию. Но медиана, проведенная из вершины равнобедренного треугольника к основанию является также и бисектриссой. Значит точка О лежит на бисектриссе, а точки Д и Е принадлежат боковым сторонам равнобедренного тр-ка АВС, следовательно ВО бисектрисса угла ДОЕ.
2. У равных тр-ков равны соответствующие стороны и углы.
Пусть DE = DF = 4 см - боковые стороны, FE = 5 см - основание, тогда периметр
DEF = 4 + 4 + 5 = 13 см. И как было сказано вначале, что у равных тр-ков равны соответствующие стороны, то АС = АВ = 4 см, ВС = 5 см. Р = 13 см.
Но может быть и другой вариант решения, поскольку в задаче не указано какая из сторон является основанием, а какая боковая, поэтому.
EF = DF = 5 см - боковые стороны, DE = 4 см - основание, Р = 5 + 5 + 4 = 14 см.
Следовательно периметр тр-ка АВС = 14 см.