Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
В квадрате АВСD точка К - середина стороны ВС, точка М - серидина стороны АВ. Докажите, что прямые АК и МД перпендикулярны, а треугольники АЕМ (Е - точка пересечения прямых АК и МД) и АВК подобны. Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними. Угол CND=углу АМD, угол АDМ=NCD Сумма углов ADM и АМD равны 90 градусов. Рассмотрим треугольник DNO. Угол OND=CND, угол АDМ=NCD. И в сумме они дают 90 градусов. Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов. Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла. Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM 2AM/OD=AM/ON, значит OD=2ON Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6 Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5 Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5 Площадь квадрата Sк=(12√5)²=720 Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180 Площадь AMCD=720-180=540
Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними.
Угол CND=углу АМD, угол АDМ=NCD
Сумма углов ADM и АМD равны 90 градусов.
Рассмотрим треугольник DNO.
Угол OND=CND,
угол АDМ=NCD. И в сумме они дают 90 градусов.
Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов.
Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла.
Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND
т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM
2AM/OD=AM/ON, значит OD=2ON
Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6
Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5
Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5
Площадь квадрата Sк=(12√5)²=720
Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ
площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180
Площадь AMCD=720-180=540