1) Около любого ромба можно описать окружность.
Неверно, так как окружность можно описать около четырехугольника, сумма противолежащих углов которого равна 180°, а в ромбе противолежащие углы равны, и, если они не прямые (частный случай), то их сумма не равна 180°.
2) В любой треугольник можно вписать не менее одной окружности.
Неверно. В любой треугольник можно вписать единственную окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
Неверно. Центр описанной около треугольника окружности - точка пересечения серединных перпендикуляров к его сторонам.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
Неверно. Центр вписанной в треугольник окружности - точка пересечения его биссектрис.
1. Строим угол C, равный данному углу Е. Для этого
строим луч СН; проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.; D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН; проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L. Проводим луч CL. Угол LCK равен данному углу Е.
2. На луче СН откладываем отрезок СА = b.
3. На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Неверно, так как окружность можно описать около четырехугольника, сумма противолежащих углов которого равна 180°, а в ромбе противолежащие углы равны, и, если они не прямые (частный случай), то их сумма не равна 180°.
2) В любой треугольник можно вписать не менее одной окружности.
Неверно. В любой треугольник можно вписать единственную окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
Неверно. Центр описанной около треугольника окружности - точка пересечения серединных перпендикуляров к его сторонам.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
Неверно. Центр вписанной в треугольник окружности - точка пересечения его биссектрис.
ответ: все утверждения неверны.
1. Строим угол C, равный данному углу Е. Для этого
строим луч СН; проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.; D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН; проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L. Проводим луч CL. Угол LCK равен данному углу Е.2. На луче СН откладываем отрезок СА = b.
3. На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Треугольник АВС - искомый.