доброй ночи! я понимаю, в чём возникла трудность. но хочу вас заверить — это легко. надеюсь, вы сами это вскоре поймёте.смотрите, чтоб понять, как это делать, нам нужно вспомнить такое понятие как вектор. вектор — направленный отрезок. по условию нам даны координаты вершин треугольника авс. чтоб найти то, что от нас требуется, то первым делом, нам следует найти координаты вектора. в нашем случае — это координаты вектора ab. давайте попробуем найти координаты нужного вектора. но для этого вспомним формулу что и как делать.чтоб найти координаты вектора, надо от точки конца отнять точки начала. вот, когда мы всё это прояснили, то можем приступить к вычислению:
Проведем окружность произвольного радиуса с центром в вершине А данного угла. Эта окружность пересекает стороны угла в точках В и С. Затем проведем окружность того же радиуса с центром в начале данного луча ОМ. Она пересекает луч в точке D. После этого построим окружность с центром D, радиус которой равен BC. Окружности с центрами О и D пересекаются в двух точках. Одну из этих точек обозначим буквой Е.
Докажем, что угол МОЕ-искомый.
Рассмотрим треугольники АВС и ОDЕ.
АВ и АС являются радисами окружности с центром А, а отрезки ОD и Ое-радиусами окружности с центром О.
т.к. по построению эти окружности имеют равные радиусы, то АВ+ОD, АС=ОЕ, ВС=DЕ.
доброй ночи! я понимаю, в чём возникла трудность. но хочу вас заверить — это легко. надеюсь, вы сами это вскоре поймёте.смотрите, чтоб понять, как это делать, нам нужно вспомнить такое понятие как вектор. вектор — направленный отрезок. по условию нам даны координаты вершин треугольника авс. чтоб найти то, что от нас требуется, то первым делом, нам следует найти координаты вектора. в нашем случае — это координаты вектора ab. давайте попробуем найти координаты нужного вектора. но для этого вспомним формулу что и как делать.чтоб найти координаты вектора, надо от точки конца отнять точки начала. вот, когда мы всё это прояснили, то можем приступить к вычислению:
Проведем окружность произвольного радиуса с центром в вершине А данного угла. Эта окружность пересекает стороны угла в точках В и С. Затем проведем окружность того же радиуса с центром в начале данного луча ОМ. Она пересекает луч в точке D. После этого построим окружность с центром D, радиус которой равен BC. Окружности с центрами О и D пересекаются в двух точках. Одну из этих точек обозначим буквой Е.
Докажем, что угол МОЕ-искомый.
Рассмотрим треугольники АВС и ОDЕ.
АВ и АС являются радисами окружности с центром А, а отрезки ОD и Ое-радиусами окружности с центром О.
т.к. по построению эти окружности имеют равные радиусы, то АВ+ОD, АС=ОЕ, ВС=DЕ.
следовательно треугольник АВС= треиугольнику ОDЕ (3 признак равенста треугольников (ссс)).
поэтому угол DOE= углу BAC.
т.е. построенный угол МОЕ равен данному углу А.