Теореме о неравенстве треугольника каждая сторона треугольника меньше суммы 2 других углов. есть ошибка. какая? 1)вместо углов должно быть сторон 2) не каждая а одна и только одна 3)не треугольника а равнобедренного треугольника 4) не меньше а больше 5) не суммы а произведения
Для любой правильной призмы справедливы формулы:
Площадь боковой поверхности:
Sбок = Pосн · h, где
Росн - периметр основания,
h - высота.
Площадь полной поверхности:
Sполн = Sбок + 2Sосн
Объем:
V = Sосн · h
____________________
a - сторона основания.
____________________
Правильная треугольная призма:
в основании лежит правильный треугольник, значит
Sосн =
Sбок = 3а · h
Sполн = 3a · h + 2 · a²√3/4 = 3ah + a²√3/2
____________________
Правильная четырехугольная призма:
в основании - квадрат, значит
Sосн = a²
Sбок = 4ah
Sполн = 4ah + 2a²
V = a²h
____________________
Правильная шестиугольная призма:
Sосн =
Sбок = 6ah
Sполн = 6ah + 2 · 3a²√3/2 = 6ah + 3a²√3
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: