Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
КМ - средняя линия основания.
SAKM - отсеченная пирамида.
Vsabc = 12
Vsabc = 1/3 Sabc · h
Vsakm = 1/3 Sakm · h, так как эти пирамиды имеют общую высоту.
Рассмотрим треугольники АВС и АКМ:
АК : АВ = 1 : 2
АМ : АС = 1 : 2
угол при вершине А общий, значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sakm : S abc = 1 : 4
Sakm = 1/4 Sabc
Vsakm = 1/3 · 1/4 Sabc · h = 1/4 (1/3 Sabc · h) = 1/4 Vsabc
Vsakm = 1/4 · 12 = 3
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°КМ - средняя линия основания.
SAKM - отсеченная пирамида.
Vsabc = 12
Vsabc = 1/3 Sabc · h
Vsakm = 1/3 Sakm · h, так как эти пирамиды имеют общую высоту.
Рассмотрим треугольники АВС и АКМ:
АК : АВ = 1 : 2
АМ : АС = 1 : 2
угол при вершине А общий, значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sakm : S abc = 1 : 4
Sakm = 1/4 Sabc
Vsakm = 1/3 · 1/4 Sabc · h = 1/4 (1/3 Sabc · h) = 1/4 Vsabc
Vsakm = 1/4 · 12 = 3