В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
6Darya6
6Darya6
01.01.2021 11:19 •  Геометрия

Тупой угол со сторонами, длины которых равны 3 и 6, вписан в окружность радиуса корень из 21. определите величину дуги, на которую он опирается.

Показать ответ
Ответ:
fhshjshetubehdh
fhshjshetubehdh
24.07.2020 23:17
Вся окружность, включающая искомую дугу L равна C=2πR=6,283*√21=28,79.
Если рассматривать заданные стороны тупого угла а=3 и b=6, как хорды
центральных углов окружности α  и β соответственно, то как известно
a=2Rsin(α/2), b=2Rsin(β/2). Отсюда следует sin(α/2)=3/9,17=0,327, α/2=19, α=38
sin(β/2)=6/9,17=0,654, β/2=41, β=82, α+β=120 . Величина угловой меры дуги, на которую опирается вписанный тупой угол 120 градусов равна 120*2=240.
При длине всей окружности С=28,79, искомая ее часть L=(2/3)28,79=19,19.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота