Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
АР=ТД= (АД-ВС)/2=3 м Опустим высоту ВР. В ΔАВР ∠АВР=90-60=30°, тогда АВ=2АР=6м (катет в прямоугольном Δ против угла в 30° равен половине гипотенузы) Дальше решим через теорему косинусов: ВР=√(АВ²+АР²-2*АВ*АР*cos60)=√(36+9-2*6*3*1/2)=√27=3√3м. ответ: высота насыпи=3√3м. Вторая задача: если угол при вершине равен 20 градусов, то углы в основании треугольника равны (180-20)/2=80 градусов. Корень из 3 на 2 это синус 60 градусов, 80 градусов больше 60, значит синус угла при основании этого треугольника больше √3/2
Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
Опустим высоту ВР. В ΔАВР ∠АВР=90-60=30°, тогда АВ=2АР=6м (катет в прямоугольном Δ против угла в 30° равен половине гипотенузы)
Дальше решим через теорему косинусов:
ВР=√(АВ²+АР²-2*АВ*АР*cos60)=√(36+9-2*6*3*1/2)=√27=3√3м.
ответ: высота насыпи=3√3м. Вторая задача: если угол при вершине равен 20 градусов, то углы в основании треугольника равны (180-20)/2=80 градусов. Корень из 3 на 2 это синус 60 градусов, 80 градусов больше 60, значит синус угла при основании этого треугольника больше √3/2