У октаэдра откололи все вершины так, что получилась фигура, у которой 6 граней — квадраты, а 8 граней — правильные шестиугольники. Рассчитай площадь поверхности этой фигуры, если длина ребра данного октаэдра — 39 ед.
Т.к. дан косинус, то нужно построить прямоугольный треугольник))) 1) строим две пересекающиеся перпендикулярные прямые)) обозначаем точку пересечения С ---это вершина прямого угла))) это будут катеты в будущем прямоугольном треугольнике... осталось построить гипотенузу... сos(x) = 0.75 = 3/4 по определению: косинус ---это отношение противолежащего катета к гипотенузе... т.е. противолежащий к нужному углу катет будет равен 3 см (или 6 м или 9 км...), а гипотенуза соответственно 4 см (или 8 м или 12 км...))) 2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А. 3) из точки А раствором циркуля в 4 см строим окружность... она пересечется с другой перпендикулярной прямой ---обозначаем точку В. АВ--гипотенуза 4 см СА--катет 3 см искомый угол ВАС его косинус = АС / АВ = 3/4 = 0.75
конечно, это скрещивающиеся прямые, но угол между ними очень даже есть :).
самое простое решение - векторное.
Пусть куб имеет сторону равную 1.
Пусть вектора АD = i ; AB = j ; AA1 = k ;
Модули единичных векторов i j k равны 1, и скалярные произведения ij = ik = jk = 0; поскольку эти вектора перпендикулярны друг другу.
Обозначим вектор АВ1 = x ; AC = y;
Вектор x = j + k
Вектор АС = i + j ; откуда вектор y = k - (i + j);
Скалярное произведение yx = k^2 - j^2 = 0;
то есть эти прямые перпендикулярны, угол между ними 90 градусов
Есть и очень простое геометрическое решение.
Если соединить середины ребер AD (точка М) и В1С1 (точка К) то МК II AB1. Кроме того, МК проходит через центр куба, так же как СА1, поэтому искомый угол - это угол между МК и СА1, лежащими в одной плоскости. При этом сечение куба этой плоскостью МА1КС - это ромб (все стороны равны), а МК и СА1 - его диагонали, поэтому они взаимно перпендикулярны.
1) строим две пересекающиеся перпендикулярные прямые))
обозначаем точку пересечения С ---это вершина прямого угла)))
это будут катеты в будущем прямоугольном треугольнике...
осталось построить гипотенузу...
сos(x) = 0.75 = 3/4
по определению: косинус ---это отношение противолежащего катета к гипотенузе...
т.е. противолежащий к нужному углу катет будет равен
3 см (или 6 м или 9 км...), а гипотенуза соответственно
4 см (или 8 м или 12 км...)))
2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А.
3) из точки А раствором циркуля в 4 см строим окружность...
она пересечется с другой перпендикулярной прямой ---обозначаем точку В.
АВ--гипотенуза 4 см
СА--катет 3 см
искомый угол ВАС
его косинус = АС / АВ = 3/4 = 0.75
конечно, это скрещивающиеся прямые, но угол между ними очень даже есть :).
самое простое решение - векторное.
Пусть куб имеет сторону равную 1.
Пусть вектора АD = i ; AB = j ; AA1 = k ;
Модули единичных векторов i j k равны 1, и скалярные произведения ij = ik = jk = 0; поскольку эти вектора перпендикулярны друг другу.
Обозначим вектор АВ1 = x ; AC = y;
Вектор x = j + k
Вектор АС = i + j ; откуда вектор y = k - (i + j);
Скалярное произведение yx = k^2 - j^2 = 0;
то есть эти прямые перпендикулярны, угол между ними 90 градусов
Есть и очень простое геометрическое решение.
Если соединить середины ребер AD (точка М) и В1С1 (точка К) то МК II AB1. Кроме того, МК проходит через центр куба, так же как СА1, поэтому искомый угол - это угол между МК и СА1, лежащими в одной плоскости. При этом сечение куба этой плоскостью МА1КС - это ромб (все стороны равны), а МК и СА1 - его диагонали, поэтому они взаимно перпендикулярны.