KM и KN отрезки касательных проведёных из точки K к окружности с центром О Найдите KM и KN если ОК=12см, А УГОЛ МОN =
Построим радиусы ОМ и ОН. Так как КМ и КН касательные проведенные из одной точки, то КМ = КН. Радиусы ОМ и ОН, проведенные к точкам касания, перпендикулярны самим касательным.
Тогда треугольники КМО и КНО равны по двум катетам, а значит угол МОК = НОК = МОН / 2 = 120 / 2 = 600. Угол ОКМ = ОКН = 90 – 60 = 300.
Катеты ОН и ОМ лежат против угла 300, тогда ОМ = ОН 120 / 2 = 60 см.
По теореме Пифагора, КМ2 = ОК2 – ОМ2 = 14400 – 3600 = 10800.
Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Войти
АнонимГеометрия19 декабря 14:44
KM и KN отрезки касательных проведёных из точки K к окружности с центром О Найдите KM и KN если ОК=12см, А УГОЛ МОN =
Построим радиусы ОМ и ОН. Так как КМ и КН касательные проведенные из одной точки, то КМ = КН. Радиусы ОМ и ОН, проведенные к точкам касания, перпендикулярны самим касательным.
Тогда треугольники КМО и КНО равны по двум катетам, а значит угол МОК = НОК = МОН / 2 = 120 / 2 = 600. Угол ОКМ = ОКН = 90 – 60 = 300.
Катеты ОН и ОМ лежат против угла 300, тогда ОМ = ОН 120 / 2 = 60 см.
По теореме Пифагора, КМ2 = ОК2 – ОМ2 = 14400 – 3600 = 10800.
КМ = КТ = 60 * √3 см.
ответ: Длина отрезков КМ и КТ равна 60 * √3 см.
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.