Угол АСВ равен 48 градусов. Его сторона СА касается окружности, сторона СВ проходит через центр окружности. Найдите градусную величину дуги АВ окружности, закоюченной внутри этого угла
Давай обозначим меньшую проекцию (наклонной, которая 13) на базовую прямую незатейливой буквой х. Тогда вторая проекция (наклонной длины 15) будет по условию х+4. Искомое расстояние от точки до прямой обозначим букой Н. Тогда по теореме Пифагора образуется два уравнения:
13 ^2 = x^2 + H^2 15^2 = (x+4)^2 + H^2
Имеем два уравнения с двумя неизвестными. Можно решить. Ну так решим же эту систему методами алгебры.
Проще всего сначала будет исключить Н, тогда получим одно уравнение: 15^2 - (x+4)^2 = 13^2 - x^2 225 - x^2 - 8*x - 16 = 169 - x^2 40 = 8*x x = 5
То есть первая проекция у нас выходит 5 см, вторая, соответственно, 5+4 = 9 см.
Осталось последнее телодвижение - по теореме Пифагора же находим Н = корень ( 13*13 - 5*5) = корень(144) = 12 см -- это ответ.
Ну, у меня так получилось. Лучше проверь, а то с калькулятором не дружу.
13 ^2 = x^2 + H^2
15^2 = (x+4)^2 + H^2
Имеем два уравнения с двумя неизвестными. Можно решить. Ну так решим же эту систему методами алгебры.
Проще всего сначала будет исключить Н, тогда получим одно уравнение:
15^2 - (x+4)^2 = 13^2 - x^2
225 - x^2 - 8*x - 16 = 169 - x^2
40 = 8*x
x = 5
То есть первая проекция у нас выходит 5 см, вторая, соответственно, 5+4 = 9 см.
Осталось последнее телодвижение - по теореме Пифагора же находим Н = корень ( 13*13 - 5*5) = корень(144) = 12 см -- это ответ.
Ну, у меня так получилось. Лучше проверь, а то с калькулятором не дружу.
Дано :
a || b.
c - секущая.
<1 = 129°.
Найти :
<2 = ?
<3 = ?
<4 = ?
<5 = ?
<6 = ?
<7 = ?
<8 = ?
При пересечении двух параллельных прямых секущей накрест лежащие углы равны, соответственные углы равны, сумма односторонних углов равна 180°.<1 и <2 — односторонние.
По выше сказанному —
<1 + <2 = 180°
<2 = 180° - <1 = 180° - 129° = 51°.
<2 = <6 = 51° — как накрест лежащие при параллельных прямых
<1 = <3 = 129° — как соответственные при параллельных прямых
<2 = <8 = 51° — как соответственные при параллельных прямых
<2 = <4 = 51° — как вертикальные
<1 = <7 = 129° — как вертикальные
<1 = <5 = 129° — как накрест лежащие при параллельных прямых
51°, 129°, 51°, 129°, 51°, 129°, 51°.