Укажіть точку, яка лежить на осі аплікат:
а) А(0; 2; 3); б) В(0; 2; 0); в) С(0; 0; 3); г) М(1; 0; 3); д) Р(1; 2; 0).
2) Якщо A(-2;4; 1) і В(3:-7;1) , то координати вектора (АВ) ⃗ …
а) (АВ) ⃗ (0;-11;0); б) (АВ) ⃗ (5;-11;1); в) (АВ) ⃗ (5;-11;0); г) (АВ) ⃗(3;-4;0).
В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2.
∠ВОК=45°, ∠АОВ=90°.
∠ОАВ=∠ОВА=45°.
В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°.
Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них.
∠ВСД=63+63=126°.
В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ.
∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.
1) 2см
2) верно
3) 4см
Объяснение:
Для начала заметим, что AO = DO = CO = BO - это радиусы окружности.
Далее, угол AOD = угол COB - вертикальные.
Треугольник AOD = треугольнику COB (так как AO = OC, OD = OB и угол AOD = углу COB(первый признак равенства треугольников)), отсюда AD = BC = 2 см.
К тому же треугольники AOD и COB - равнобедренные, значит
угол OAD = угол ADO = угол OCB = угол OBC
Рассмотрим угол DAO = угол OBC - они накрест-лежащие и равны, значит AD параллельна CB
в) если угол AOD = 60 градусов, а мы выяснили, что треугольник AOD - равнобедренный то угол OAD = (180-60)/2 = 60 =угол ADO, следовательно треугольник ADO - равносторонний и AD = AO = OD, поэтому AO = AD = 2, но AO - радиус, значит диаметр равен AB = AO*2 = 2см*2=4 см