В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
faystt
faystt
27.07.2021 14:42 •  Геометрия

Условие задания: Дано, что BD — биссектриса угла СВА. ВА IDA и CB ICE.
Вычисли EB, если DA 12 см, ВА = 16 см, СЕ = 9,6 см.
A
В
E
D
с
Сначала докажи подобие треугольников.
(В каждое окошечко пиши одну букву или число.)
– С –
D = 1 DB
Т. К.
первому признаку подобия треугольников).
}
— ABAD - ABCE по двум углам (по
Е – биссектриса
ЕВ —
CM.​

Показать ответ
Ответ:
vadim88768
vadim88768
29.11.2022 21:18
Определение:
Две прямые называются скрещивающимися, если они не лежат в одной плоскости, т.е. не параллельны и не пересекаются.

Признак скрещивающихся прямых:
Если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Дано: a⊂α, b∩α = M, M∉a.

Доказать: прямые а и b скрещивающиеся.

Доказательство:

Предположим, что прямые а и b не являются скрещивающимися, тогда через них можно провести плоскость. В этой плоскости окажется и точка М. Но через прямую а и точку М можно провести единственную плоскость. Значит, плоскость, проходящая через прямые а и b совпадает с плоскостью α. Но тогда прямая b лежит в плоскости α. Это противоречит условию: прямая b пересекает плоскость α.
Предположение неверно, прямые а и b скрещивающиеся.

Сформулируйте и докажите теорему, выражающую признак скрещивающихся прямых.
0,0(0 оценок)
Ответ:
Daniilkan
Daniilkan
12.02.2021 18:26

Существует множество различных видов симметрии. К простейшим из них относятся:
а) симметрия относительно плоскости (зеркальная симметрия);
б) симметрия относительно точки (центральная симметрия);
в) симметрия относительно прямой (осевая симметрия);
г) симметрия вращения;
д) цилиндрическая симметрия;
е) сферическая симметрия.

Один из вариантов (в):

Две фигуры называются симметричными относительно некоторой прямой, если при перегибании плоскости чертежа по этой прямой они совмещаются.
В данной задаче вряд ли требуется перегибать плоскость бумаги.
Пусть требуется построить треугольник, симметричный данному относительно оси симметрии КМ.
Опустим из каждой вершины треугольника перпендикуляр к КМ.
Затем на продолжениях этих перпендикуляров отложим отрезки, равные расстоянию от вершин треугольника до КМ. Соединим эти отрезки.
Получившийся треугольник будет симметричным данному относительно прямой КМ. Т.е. если перегнуть чертеж по прямой КМ, то соответствующие вершины треугольника совместятся и совместятся сами треугольники.


Как построить симметричную фигуру данной? 0_о
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота