8)Угол, с вершиной в центре окружности, называется центральным углом. 11)Вписанный угол, угол, вершина которого лежит на плоской кривой, а стороны являются хордами этой кривой.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°. 12)Теорема. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу окружности.
Следствие. Вписанные углы, опирающиеся на одну и ту же дугу ок ружности, равны.
Доказательство. Действительно, если вписанные углы ACB и ADB опираются на одну и ту же дугу AB то у них один и тот же центральный угол AOB. По теореме данные вписанные углы равны половине центрального угла AOB и, следовательно, равны между собой.
проводим радиусы ОВ и ОС перпендикулярные в точки касания, уголА=60, четырехугольник АСОВ, уголВОС=360-90-90-60=120, треугольник ВОС равнобедренный, ОС=ОВ=20, проводим высоту ОН на ВС=медиане=биссектрисе,
треугольник АВС равнобедренный, АС=АВ как касательные проведенные из одной точки, уголАВС=уголАСВ=(180-уголА)/2=(180-60)/2=60, треугольник АВС равносторонний, все углы=60, АС=АВ=ВС=20*корень3, периметр=3*20*корень3=60*корень3
11)Вписанный угол, угол, вершина которого лежит на плоской кривой, а стороны являются хордами этой кривой.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°.
12)Теорема. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу окружности.
Следствие. Вписанные углы, опирающиеся на одну и ту же дугу ок ружности, равны.
Доказательство. Действительно, если вписанные углы ACB и ADB опираются на одну и ту же дугу AB то у них один и тот же центральный угол AOB. По теореме данные вписанные углы равны половине центрального угла AOB и, следовательно, равны между собой.
проводим радиусы ОВ и ОС перпендикулярные в точки касания, уголА=60, четырехугольник АСОВ, уголВОС=360-90-90-60=120, треугольник ВОС равнобедренный, ОС=ОВ=20, проводим высоту ОН на ВС=медиане=биссектрисе,
СН=НВ, уголСОН=уголВОН=1/2уголВОС=120/2=60, треугольник СОН прямоугольный, СН=ОС*sin углаСОН=20*корень3/2=10*корень3, СВ=2*СН=2*10*корень3=20*корень3
треугольник АВС равнобедренный, АС=АВ как касательные проведенные из одной точки, уголАВС=уголАСВ=(180-уголА)/2=(180-60)/2=60, треугольник АВС равносторонний, все углы=60, АС=АВ=ВС=20*корень3, периметр=3*20*корень3=60*корень3