В каждом задании только один правильный ответ! І I a Рис. 1 1. 2 3 N21.На рисунке 121-135", 24-45°. Найдите пару параллельных прямых. А) а и с; Б) вис; В) а и в; Г) на рисунке нет параллельных прямых No2.На рисунке 1 22=55°, 23 на 70° больше 22.Найдите пару параллельных прямых. А) а ис; Б) вис; в) аив; г) на рисунке нет параллельных прямых
1) В треугольниках АВС и ADC углы В и D прямые. Значит, при наложении их стороны совпадут. Совместим их так, чтобы луч ВА совпал с лучом DC, а луч ВС совпал с лучом DA. Так как у прямоугольника противоположные стороны равны, то совпадут и отрезки АВ и СD, и ВС и AD. Тогда совпадут и третьи стороны треугольников. Треугольники совпали при наложении, значит они равны.
2) АВ = CD и ВС = AD как противоположные стороны прямоугольника, ∠АВС = ADC = 90°, ⇒ ΔАВС = ΔCDA по двум сторонам и углу между ними ( по первому признаку)
АС - общая сторона треугольников АВС и ADC, ∠ВАС = ∠DCA как накрест лежащие при пересечении АВ║CD секущей АС, ∠ВСА = ∠DAC как накрест лежащие при пересечении ВС║AD секущей АС, ⇒ ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам ( по второму признаку)
Вариант решения В параллелограмме две пары равных сторон. Пусть каждая сторона одной пары рвана х, тогда каждая сторона другой пары равна х+4 Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. D²+d²=2a²+2b² Запишем уравнение по данным в условии значениям: 14²+12²=2х²+ 2(х+4)² 196+144=2х²+2х²+16х+32 4х²+16х-308=0 Для удобства вычисления разделим обе стороны на 4 и решим квадратное уравнение: х²+4х-77=0 D=b²-4ac=4²-4·(-77)=324 х₁=(-4+√324):2=7см х₂=(-4-√324):2=-11 ( не подходит) Стороны одной пары равны по 7 см Стороны другой пары равны по 11 см каждая Р=2*(7+11)=36см
Совместим их так, чтобы луч ВА совпал с лучом DC, а луч ВС совпал с лучом DA.
Так как у прямоугольника противоположные стороны равны, то совпадут и отрезки АВ и СD, и ВС и AD.
Тогда совпадут и третьи стороны треугольников.
Треугольники совпали при наложении, значит они равны.
2) АВ = CD и ВС = AD как противоположные стороны прямоугольника,
∠АВС = ADC = 90°, ⇒
ΔАВС = ΔCDA по двум сторонам и углу между ними ( по первому признаку)
АС - общая сторона треугольников АВС и ADC,
∠ВАС = ∠DCA как накрест лежащие при пересечении АВ║CD секущей АС,
∠ВСА = ∠DAC как накрест лежащие при пересечении ВС║AD секущей АС, ⇒ ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам ( по второму признаку)
В параллелограмме две пары равных сторон.
Пусть каждая сторона одной пары рвана х,
тогда каждая сторона другой пары равна х+4
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
D²+d²=2a²+2b²
Запишем уравнение по данным в условии значениям:
14²+12²=2х²+ 2(х+4)²
196+144=2х²+2х²+16х+32
4х²+16х-308=0
Для удобства вычисления разделим обе стороны на 4 и решим квадратное уравнение:
х²+4х-77=0
D=b²-4ac=4²-4·(-77)=324
х₁=(-4+√324):2=7см
х₂=(-4-√324):2=-11 ( не подходит)
Стороны одной пары равны по 7 см
Стороны другой пары равны по 11 см каждая
Р=2*(7+11)=36см